This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303375 #17 Jan 23 2025 16:29:54 %S A303375 2,33,65,96,244,307,730,761,972,1025,1088,1753,3126,3189,3854,4097, %T A303375 4128,4339,5120,7221,7777,7840,8505,11872,15626,15657,15868,16649, %U A303375 16808,16871,17536,18750,20903,23401,32432,32769,32832,33497,36864,46657,46688,46899,47680,48393 %N A303375 Numbers of the form a^5 + b^6, with integers a, b > 0. %C A303375 Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form. %C A303375 This sequence is among others motivated by the hard-to-compute sequence A300567 = numbers z such that z^7 = x^5 + y^6 for some x, y >= 1. %H A303375 Charles R Greathouse IV, <a href="/A303375/b303375.txt">Table of n, a(n) for n = 1..10000</a> %F A303375 a(n) >> n^(30/11). Probably this is the correct asymptotic order. - _Charles R Greathouse IV_, Jan 23 2025 %o A303375 (PARI) is(n,k=5,m=6)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0. %o A303375 A303375_vec(L=10^5,k=5,m=6,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k), listput(S,a^m+b^k)));Set(S)} \\ all terms up to limit L %Y A303375 Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4). %Y A303375 Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6). %Y A303375 See also A300567: numbers z such that z^7 = x^5 + y^6 for some x, y >= 1. %K A303375 nonn,easy %O A303375 1,1 %A A303375 _M. F. Hasler_, Apr 22 2018