This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303387 #24 Apr 25 2018 03:10:56 %S A303387 1,-2,0,-10,22,-102,244,-1270,3360,-16886,46160,-230670,656550, %T A303387 -3238250,9474684,-46289530,138590342,-671116710,2047182480, %U A303387 -9837322110,30482926482,-145474988978,456854466860,-2166890174370,6884188144964,-32471461699594 %N A303387 Expansion of Product_{k>=1} ((1 - 4*x^k)/(1 + 4*x^k))^(1/4). %H A303387 Seiichi Manyama, <a href="/A303387/b303387.txt">Table of n, a(n) for n = 0..1000</a> %F A303387 a(n) ~ c * (-4)^n / n^(3/4), where c = (QPochhammer[-1, -1/4] / QPochhammer[-1/4])^(1/4) / Gamma(1/4) = 0.29599817925108933574246285.... - _Vaclav Kotesovec_, Apr 25 2018 %p A303387 seq(coeff(series(mul(((1-4*x^k)/(1+4*x^k))^(1/4), k = 1..n), x, n+1), x, n), n=0..25); # _Muniru A Asiru_, Apr 23 2018 %o A303387 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1-4*x^k)/(1+4*x^k))^(1/4))) %Y A303387 Expansion of Product_{k>=1} ((1 - 2^b*x^k)/(1 + 2^b*x^k))^(1/(2^b)): A002448 (b=0), A303345 (b=1), this sequence (b=2), A303396 (b=3). %Y A303387 Cf. A303360, A303402. %K A303387 sign %O A303387 0,2 %A A303387 _Seiichi Manyama_, Apr 23 2018