A303389 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 5^c + 5^d, where a,b,c,d are nonnegative integers with a <= b and c <= d.
0, 1, 1, 1, 1, 2, 1, 3, 2, 2, 2, 4, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 1, 5, 4, 3, 2, 5, 5, 5, 5, 3, 3, 5, 5, 4, 4, 4, 5, 5, 2, 5, 3, 5, 4, 7, 2, 4, 6, 6, 5, 4, 4, 5, 8, 4, 4, 4, 7, 6, 4, 3, 4, 8, 4, 7, 3, 3, 6, 8, 2, 5, 6, 5, 4, 6, 4, 3
Offset: 1
Keywords
Examples
a(4) = 1 with 4 = 1*(1+1)/2 + 1*(1+1)/2 + 5^0 + 5^0. a(5) = 1 with 5 = 0*(0+1)/2 + 2*(2+1)/2 + 5^0 + 5^0. a(7) = 1 with 7 = 0*(0+1)/2 + 1*(1+1)/2 + 5^0 + 5^1. a(25) = 1 with 25 = 0*(0+1)/2 + 5*(5+1)/2 + 5^1 + 5^1.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
- Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; f[n_]:=f[n]=FactorInteger[n]; g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0; QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]); tab={};Do[r=0;Do[If[QQ[4(n-5^j-5^k)+1],Do[If[SQ[8(n-5^j-5^k-x(x+1)/2)+1],r=r+1],{x,0,(Sqrt[4(n-5^j-5^k)+1]-1)/2}]],{j,0,Log[5,n/2]},{k,j,Log[5,n-5^j]}];tab=Append[tab,r],{n,1,80}];Print[tab]
Comments