cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303396 Expansion of Product_{k>=1} ((1 - 8*x^k)/(1 + 8*x^k))^(1/8).

This page as a plain text file.
%I A303396 #13 Apr 25 2018 06:22:08
%S A303396 1,-2,0,-42,86,-1638,4116,-76662,218592,-3879766,11965072,-205722702,
%T A303396 672706566,-11257625386,38520382716,-630071416794,2236375718918,
%U A303396 -35864826630822,131232962248816,-2068477295105214,7767014381299026,-120556991420552658
%N A303396 Expansion of Product_{k>=1} ((1 - 8*x^k)/(1 + 8*x^k))^(1/8).
%H A303396 Seiichi Manyama, <a href="/A303396/b303396.txt">Table of n, a(n) for n = 0..1000</a>
%F A303396 a(n) ~ c * (-8)^n / n^(7/8), where c = (QPochhammer[-1, -1/8] / QPochhammer[-1/8])^(1/8) / Gamma(1/8) = 0.14075750048358669653215841485... - _Vaclav Kotesovec_, Apr 25 2018
%o A303396 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1-8*x^k)/(1+8*x^k))^(1/8)))
%Y A303396 Expansion of Product_{k>=1} ((1 - 2^b*x^k)/(1 + 2^b*x^k))^(1/(2^b)): A002448 (b=0), A303345 (b=1), A303387 (b=2), this sequence (b=3).
%Y A303396 Cf. A303382.
%K A303396 sign
%O A303396 0,2
%A A303396 _Seiichi Manyama_, Apr 23 2018