This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303410 #4 Apr 23 2018 10:41:44 %S A303410 0,1,0,1,3,0,2,7,10,0,3,10,28,23,0,5,27,42,119,61,0,8,45,100,168,541, %T A303410 162,0,13,98,290,547,902,2327,421,0,21,193,730,2079,4013,3256,10384, %U A303410 1103,0,34,379,1700,6322,29411,21361,15852,47491,2890,0,55,778,4246,17903 %N A303410 T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A303410 Table starts %C A303410 .0....1......1......2.......3.........5..........8..........13............21 %C A303410 .0....3......7.....10......27........45.........98.........193...........379 %C A303410 .0...10.....28.....42.....100.......290........730........1700..........4246 %C A303410 .0...23....119....168.....547......2079.......6322.......17903.........53665 %C A303410 .0...61....541....902....4013.....29411.....160247......660748.......3071197 %C A303410 .0..162...2327...3256...21361....236326....1716995.....8688851......56229035 %C A303410 .0..421..10384..15852..115770...2158662...24386918...158640643....1293822589 %C A303410 .0.1103..47491..77904..803911..27002794..497878411..4298730424...50946692110 %C A303410 .0.2890.208616.314276.4667376.250400003.6748940959.74532460229.1222253462556 %H A303410 R. H. Hardin, <a href="/A303410/b303410.txt">Table of n, a(n) for n = 1..180</a> %F A303410 Empirical for column k: %F A303410 k=1: a(n) = a(n-1) %F A303410 k=2: a(n) = 2*a(n-1) +a(n-2) +2*a(n-3) -a(n-4) %F A303410 k=3: [order 18] %F A303410 k=4: [order 72] %F A303410 Empirical for row n: %F A303410 n=1: a(n) = a(n-1) +a(n-2) %F A303410 n=2: a(n) = a(n-1) +3*a(n-2) -4*a(n-4) for n>5 %F A303410 n=3: [order 15] for n>17 %F A303410 n=4: [order 71] for n>72 %e A303410 Some solutions for n=5 k=4 %e A303410 ..0..1..0..0. .0..1..1..0. .0..1..0..1. .0..0..0..0. .0..0..0..0 %e A303410 ..1..0..1..1. .1..0..0..1. .1..0..1..0. .1..1..1..1. .1..0..1..0 %e A303410 ..0..0..0..0. .1..1..1..1. .0..1..0..1. .1..0..1..0. .0..1..0..1 %e A303410 ..0..1..0..0. .0..1..1..0. .0..0..0..0. .1..1..0..1. .1..1..1..1 %e A303410 ..1..0..1..1. .1..0..0..1. .1..1..1..1. .1..0..1..0. .0..0..0..1 %Y A303410 Column 2 is A185828. %Y A303410 Column 4 is A302524. %Y A303410 Row 1 is A000045(n-1). %Y A303410 Row 2 is A302279. %Y A303410 Row 3 is A302529. %K A303410 nonn,tabl %O A303410 1,5 %A A303410 _R. H. Hardin_, Apr 23 2018