A303418 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
16, 512, 15647, 480953, 14783632, 454381369, 13965759339, 429248347970, 13193275586412, 405505402581780, 12463518290067297, 383075754661780748, 11774125924935072114, 361886753753857667867, 11122865797202721389960
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0 ..0..0..1..0..0. .0..0..0..1..1. .0..0..1..0..0. .0..0..0..1..0 ..0..1..0..1..0. .0..1..1..1..1. .1..0..0..1..1. .0..1..1..0..0 ..1..0..1..0..0. .1..0..1..0..1. .0..1..1..0..0. .0..0..1..0..0 ..0..1..0..1..1. .1..1..1..1..0. .0..0..0..0..0. .1..1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A303421.
Formula
Empirical: a(n) = 25*a(n-1) +145*a(n-2) +920*a(n-3) +1265*a(n-4) +1083*a(n-5) -13664*a(n-6) -14525*a(n-7) -1491*a(n-8) +33615*a(n-9) +17971*a(n-10) -5436*a(n-11) -22517*a(n-12) -1311*a(n-13) +444*a(n-14) +1917*a(n-15) -144*a(n-16)
Comments