A303419 Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
32, 2048, 123337, 7486281, 454377792, 27575294129, 1673515027797, 101563813268522, 6163796529251277, 374074067226358827, 22702145834085172520, 1377768389855867495759, 83615256022880131226397
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0..1..1. .0..0..0..0..1..1. .0..0..0..0..1..1. .0..0..0..0..0..0 ..0..0..0..1..1..1. .0..0..0..1..1..1. .0..0..0..1..1..1. .0..0..0..1..1..0 ..0..0..1..1..1..0. .0..0..1..1..1..0. .0..0..1..1..1..0. .0..0..1..1..1..0 ..0..0..0..1..1..1. .0..0..0..0..0..1. .0..0..0..1..0..0. .0..0..0..0..1..1 ..0..0..1..1..1..1. .0..0..1..0..1..1. .0..0..0..0..1..1. .0..0..0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A303421.
Formula
Empirical: a(n) = 50*a(n-1) +537*a(n-2) +6572*a(n-3) +13015*a(n-4) -10502*a(n-5) -1034728*a(n-6) -2010884*a(n-7) +2323812*a(n-8) +37642817*a(n-9) +39027550*a(n-10) -100266124*a(n-11) -495653941*a(n-12) -186656679*a(n-13) +1174554746*a(n-14) +2832288174*a(n-15) -309318286*a(n-16) -5383405509*a(n-17) -6750919151*a(n-18) +2258857088*a(n-19) +9633134010*a(n-20) +8225359041*a(n-21) -2302191034*a(n-22) -6863063050*a(n-23) -5007931297*a(n-24) +577218190*a(n-25) +1671123600*a(n-26) +1337271024*a(n-27) +2183424*a(n-28) -35218432*a(n-29) -100046336*a(n-30) +15943680*a(n-31)
Comments