cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A303415 Number of n X n 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 8, 252, 30897, 14783632, 27575294129, 200493397340704, 5683010875200460450, 627998579658329070097348, 270542136528524318473547313146, 454367389836320183421616246521390670
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2018

Keywords

Comments

Diagonal of A303421.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..0..0. .0..0..0..1..1. .0..0..0..0..1. .0..0..1..0..0
..0..1..1..1..0. .0..0..1..0..1. .0..1..1..0..1. .0..0..1..0..0
..1..0..1..1..1. .1..1..1..1..0. .1..1..0..1..0. .0..1..0..0..1
..1..1..0..1..0. .1..1..0..0..1. .1..0..1..1..0. .0..0..1..0..0
		

Crossrefs

Cf. A303421.

A303416 Number of n X 3 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 252, 1988, 15684, 123732, 976132, 7700788, 60752164, 479278932, 3781071812, 29829193588, 235325017444, 1856498858132, 14646075660292, 115544122910388, 911537305199524, 7191194479141332, 56731938168469572, 447563032495731188
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2018

Keywords

Comments

Column 3 of A303421.

Examples

			Some solutions for n=5
..0..1..0. .0..1..1. .0..0..1. .0..1..1. .0..0..1. .0..1..0. .0..0..0
..1..0..0. .0..0..0. .1..0..0. .0..0..1. .1..0..0. .0..1..0. .0..1..1
..0..0..0. .1..0..0. .0..0..0. .0..0..0. .0..1..1. .1..1..1. .1..1..1
..0..1..1. .0..0..1. .1..1..0. .0..1..0. .0..0..0. .1..1..1. .0..0..0
..1..1..0. .0..1..1. .1..0..1. .1..0..0. .1..0..0. .1..0..0. .1..0..1
		

Crossrefs

Cf. A303421.

Formula

Empirical: a(n) = 7*a(n-1) +6*a(n-2) +8*a(n-3).

A303417 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1985, 30897, 480960, 7486369, 116529645, 1813851698, 28233652317, 439473157219, 6840654335738, 106478748377005, 1657403414891639, 25798444493138200, 401567736789419233, 6250634501358061189
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2018

Keywords

Comments

Column 4 of A303421.

Examples

			Some solutions for n=5
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0
..1..0..1..1. .0..0..0..0. .0..1..1..0. .1..0..1..0. .1..1..1..0
..0..0..0..1. .1..1..1..1. .1..1..1..1. .0..1..1..1. .0..1..0..1
..0..1..1..1. .0..0..0..0. .0..0..1..0. .0..0..1..1. .1..0..0..0
..1..1..1..0. .0..0..0..1. .0..1..0..1. .1..1..0..1. .0..0..0..1
		

Crossrefs

Cf. A303421.

Formula

Empirical: a(n) = 14*a(n-1) +21*a(n-2) +54*a(n-3) -23*a(n-4) -18*a(n-5) -20*a(n-6)

A303418 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 15647, 480953, 14783632, 454381369, 13965759339, 429248347970, 13193275586412, 405505402581780, 12463518290067297, 383075754661780748, 11774125924935072114, 361886753753857667867, 11122865797202721389960
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2018

Keywords

Comments

Column 5 of A303421.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..0..0. .0..0..0..1..1. .0..0..1..0..0. .0..0..0..1..0
..0..1..0..1..0. .0..1..1..1..1. .1..0..0..1..1. .0..1..1..0..0
..1..0..1..0..0. .1..0..1..0..1. .0..1..1..0..0. .0..0..1..0..0
..0..1..0..1..1. .1..1..1..1..0. .0..0..0..0..0. .1..1..0..0..1
		

Crossrefs

Cf. A303421.

Formula

Empirical: a(n) = 25*a(n-1) +145*a(n-2) +920*a(n-3) +1265*a(n-4) +1083*a(n-5) -13664*a(n-6) -14525*a(n-7) -1491*a(n-8) +33615*a(n-9) +17971*a(n-10) -5436*a(n-11) -22517*a(n-12) -1311*a(n-13) +444*a(n-14) +1917*a(n-15) -144*a(n-16)

A303419 Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 123337, 7486281, 454377792, 27575294129, 1673515027797, 101563813268522, 6163796529251277, 374074067226358827, 22702145834085172520, 1377768389855867495759, 83615256022880131226397
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2018

Keywords

Comments

Column 6 of A303421.

Examples

			Some solutions for n=5
..0..0..0..0..1..1. .0..0..0..0..1..1. .0..0..0..0..1..1. .0..0..0..0..0..0
..0..0..0..1..1..1. .0..0..0..1..1..1. .0..0..0..1..1..1. .0..0..0..1..1..0
..0..0..1..1..1..0. .0..0..1..1..1..0. .0..0..1..1..1..0. .0..0..1..1..1..0
..0..0..0..1..1..1. .0..0..0..0..0..1. .0..0..0..1..0..0. .0..0..0..0..1..1
..0..0..1..1..1..1. .0..0..1..0..1..1. .0..0..0..0..1..1. .0..0..0..1..1..1
		

Crossrefs

Cf. A303421.

Formula

Empirical: a(n) = 50*a(n-1) +537*a(n-2) +6572*a(n-3) +13015*a(n-4) -10502*a(n-5) -1034728*a(n-6) -2010884*a(n-7) +2323812*a(n-8) +37642817*a(n-9) +39027550*a(n-10) -100266124*a(n-11) -495653941*a(n-12) -186656679*a(n-13) +1174554746*a(n-14) +2832288174*a(n-15) -309318286*a(n-16) -5383405509*a(n-17) -6750919151*a(n-18) +2258857088*a(n-19) +9633134010*a(n-20) +8225359041*a(n-21) -2302191034*a(n-22) -6863063050*a(n-23) -5007931297*a(n-24) +577218190*a(n-25) +1671123600*a(n-26) +1337271024*a(n-27) +2183424*a(n-28) -35218432*a(n-29) -100046336*a(n-30) +15943680*a(n-31)

A303420 Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 972168, 116517744, 13963574592, 1673186560760, 200493397340704, 24024569786901184, 2878797172114538576, 344958245288471965824, 41335385495979014696632, 4953104083775431293635528
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2018

Keywords

Comments

Column 7 of A303421.

Examples

			Some solutions for n=5
..0..0..0..0..0..0..0. .0..0..0..0..0..1..1. .0..0..0..0..1..0..0
..0..0..0..0..1..1..1. .0..0..0..1..1..1..1. .0..0..0..1..0..1..1
..0..0..1..1..0..0..1. .0..0..1..0..0..0..1. .0..0..1..0..0..1..1
..0..0..0..0..0..1..1. .0..0..0..0..0..1..1. .0..0..0..0..0..1..1
..0..0..0..0..0..0..0. .0..0..0..1..1..1..1. .0..0..0..1..1..1..0
		

Crossrefs

Cf. A303421.

Formula

Empirical recurrence of order 58 (see link above)

A303422 Number of 3Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 252, 1985, 15647, 123337, 972168, 7662841, 60400282, 476088932, 3752642337, 29579189147, 233149966025, 1837741608616, 14485501658565, 114178052735590, 899977648952776, 7093830637396745, 55915203194889879, 440736480491065049
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2018

Keywords

Comments

Row 3 of A303421.

Examples

			Some solutions for n=5
..0..1..1..1..1. .0..0..0..0..1. .0..0..0..0..0. .0..0..1..0..1
..1..1..0..1..0. .1..1..0..0..0. .0..1..0..1..1. .0..1..0..0..0
..1..0..0..1..0. .1..1..0..1..0. .1..0..0..1..0. .1..0..0..0..0
		

Crossrefs

Cf. A303421.

Formula

Empirical: a(n) = 7*a(n-1) +4*a(n-2) +21*a(n-3) +18*a(n-4)

A303423 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1988, 30897, 480953, 7486281, 116517744, 1813509273, 28226012078, 439318146284, 6837678112091, 106423655020443, 1656409429611799, 25780849141739720, 401260805513420875, 6245342547417157374
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2018

Keywords

Comments

Row 4 of A303421.

Examples

			Some solutions for n=5
..0..0..0..0..1. .0..0..0..1..0. .0..1..0..1..1. .0..0..0..1..1
..0..0..0..0..0. .0..1..1..0..0. .0..0..1..1..1. .0..0..0..0..1
..0..1..1..0..1. .0..1..0..0..1. .0..1..1..1..0. .0..0..1..1..1
..0..0..1..1..1. .0..0..0..1..1. .1..0..1..1..1. .0..0..0..1..0
		

Crossrefs

Cf. A303421.

Formula

Empirical: a(n) = 14*a(n-1) +12*a(n-2) +175*a(n-3) +283*a(n-4) -235*a(n-5) -144*a(n-6) +67*a(n-7) -135*a(n-8) +50*a(n-9)

A303424 Number of 5Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 15684, 480960, 14783632, 454377792, 13963574592, 429120257920, 13187561948672, 405274990273152, 12454747469604352, 382754285816985088, 11762650890909921792, 361485059270954623488, 11109013532532411652096
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2018

Keywords

Comments

Row 5 of A303421.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..1. .0..0..0..1..0. .0..0..0..1..0. .0..0..0..0..1
..1..1..0..0..1. .1..1..0..0..1. .1..0..0..1..0. .0..1..1..1..0
..1..0..1..1..0. .0..0..0..0..1. .0..1..0..1..1. .0..0..1..0..1
..0..1..0..1..1. .0..0..1..0..1. .0..1..0..0..0. .1..0..0..0..0
		

Crossrefs

Cf. A303421.

Formula

Empirical: a(n) = 24*a(n-1) +128*a(n-2) +1992*a(n-3) +12020*a(n-4) +34880*a(n-5) +114640*a(n-6) -50896*a(n-7) -1751680*a(n-8) -2941888*a(n-9) +1000832*a(n-10) +4564992*a(n-11) +15197184*a(n-12) +31211520*a(n-13) +9373696*a(n-14) -4317184*a(n-15) -8290304*a(n-16) -40501248*a(n-17) -3145728*a(n-18) +16777216*a(n-19)

A303425 Number of 6 X n 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 123732, 7486369, 454381369, 27575294129, 1673186560760, 101524906002993, 6160343885638868, 373798050227180138, 22681348975409801485, 1376260828428633974651, 83508874354023488037997
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2018

Keywords

Comments

Row 6 of A303421.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..1..0. .0..1..1..0..0. .0..1..1..0..0. .0..0..1..1..0
..1..1..1..0..0. .1..1..1..0..0. .1..0..1..1..0. .1..0..1..1..0
..1..0..1..1..1. .0..0..0..0..1. .0..0..1..0..1. .0..1..0..1..0
..0..0..1..0..1. .0..1..1..1..0. .0..0..0..1..0. .0..0..1..0..1
		

Crossrefs

Cf. A303421.

Formula

Empirical recurrence of order 44 (see link above).
Showing 1-10 of 11 results. Next