A303429 Number of ordered pairs (k, m) of nonnegative integers such that n - 3^k - 5^m can be written as the sum of two squares.
0, 1, 1, 2, 1, 3, 2, 3, 2, 4, 3, 4, 2, 4, 4, 3, 2, 4, 4, 3, 2, 4, 3, 4, 1, 4, 4, 6, 3, 6, 4, 5, 5, 6, 4, 8, 4, 6, 5, 5, 4, 7, 5, 7, 5, 6, 4, 5, 3, 4, 6, 5, 5, 7, 5, 3, 6, 4, 4, 8, 3, 6, 5, 5, 4, 6, 4, 7, 6, 4, 4, 5, 4, 4, 5, 4, 5, 8, 4, 4, 5, 6, 4, 8, 2, 9, 7, 5, 5, 6
Offset: 1
Keywords
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
- Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
Crossrefs
Programs
-
Maple
a(5) = 1 with 5 - 3^1 - 5^0 = 0^2 + 1^2. a(25) = 1 with 25 - 3^1 - 5^1 = 1^2 + 4^2.
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; f[n_]:=f[n]=FactorInteger[n]; g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0; QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]); tab={};Do[r=0;Do[If[QQ[n-3^k-5^m],r=r+1],{k,0,Log[3,n]},{m,0,If[n==3^k,-1,Log[5,n-3^k]]}];tab=Append[tab,r],{n,1,90}];Print[tab]
Comments