A303434 Numbers of the form x*(3*x-1)/2 + 3^y with x and y nonnegative integers.
1, 2, 3, 4, 6, 8, 9, 10, 13, 14, 15, 21, 23, 25, 27, 28, 31, 32, 36, 38, 39, 44, 49, 52, 54, 60, 62, 71, 73, 78, 79, 81, 82, 86, 93, 95, 97, 101, 103, 116, 118, 119, 120, 126, 132, 144, 146, 148, 151, 154, 172, 173, 177, 179, 185
Offset: 1
Keywords
Examples
a(1) = 1 with 1 = 0*(3*0-1)/2 + 3^0. a(2) = 2 with 2 = 1*(3*1-1)/2 + 3^0. a(5) = 6 with 6 = 2*(3*2-1)/2 + 3^0. a(6) = 8 with 8 = 2*(3*2-1)/2 + 3^1.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), no. 7, 1367-1396.
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
Crossrefs
Programs
-
Mathematica
PenQ[n_]:=PenQ[n]=IntegerQ[Sqrt[24n+1]]&&(n==0||Mod[Sqrt[24n+1]+1,6]==0); tab={};Do[Do[If[PenQ[m-3^k],n=n+1;tab=Append[tab,m];Goto[aa]],{k,0,Log[3,m]}];Label[aa],{m,1,185}];Print[tab]
Comments