cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303443 Expansion of Product_{k>=1} ((1 + 8^k*x^k)/(1 - 8^k*x^k))^(1/8^k).

This page as a plain text file.
%I A303443 #11 Apr 25 2018 07:17:26
%S A303443 1,2,4,50,98,1830,7264,89326,247252,4520886,20225372,241414342,
%T A303443 786393322,12744704970,62688642800,771140700226,2635449405522,
%U A303443 40907909552038,211134761381948,2451388697035478,9148627707018230,143396849321918482,743716982801639120
%N A303443 Expansion of Product_{k>=1} ((1 + 8^k*x^k)/(1 - 8^k*x^k))^(1/8^k).
%H A303443 Seiichi Manyama, <a href="/A303443/b303443.txt">Table of n, a(n) for n = 0..1000</a>
%t A303443 nmax = 30; CoefficientList[Series[Exp[Sum[((-1)^j - 1) / (j*(1 - 1/(8^(j-1)*x^j))), {j, 1, nmax}]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 25 2018 *)
%o A303443 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+8^k*x^k)/(1-8^k*x^k))^(1/8^k)))
%Y A303443 Cf. A303381, A303438, A303442.
%K A303443 nonn
%O A303443 0,2
%A A303443 _Seiichi Manyama_, Apr 24 2018