cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303444 Expansion of Product_{k>=1} ((1 + (4^k*x)^k)/(1 - (4^k*x)^k))^(1/4^k).

This page as a plain text file.
%I A303444 #10 Apr 25 2018 05:55:22
%S A303444 1,2,34,8268,33571414,2199090644476,2305847408435939284,
%T A303444 38685630839429196310146392,10384593794440986129804618334166246,
%U A303444 44601490417830435032541177335778584157585132,3064991081820980697863893053179715579559319341564967996,3369993333399959956498356892070248429341537193850764394491913892776
%N A303444 Expansion of Product_{k>=1} ((1 + (4^k*x)^k)/(1 - (4^k*x)^k))^(1/4^k).
%H A303444 Seiichi Manyama, <a href="/A303444/b303444.txt">Table of n, a(n) for n = 0..41</a>
%F A303444 a(n) ~ 2^(2*n^2 - 2*n + 1). - _Vaclav Kotesovec_, Apr 25 2018
%o A303444 (PARI) N=20; x='x+O('x^N); Vec(prod(k=1, N, ((1+(4^k*x)^k)/(1-(4^k*x)^k))^(1/4^k)))
%Y A303444 Cf. A303440, A303445.
%K A303444 nonn
%O A303444 0,2
%A A303444 _Seiichi Manyama_, Apr 24 2018