A303452 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
8, 128, 1690, 22756, 306767, 4136339, 55781418, 752277525, 10145443043, 136824986363, 1845271319103, 24886004513970, 335621796861796, 4526318937807297, 61043601702103344, 823256462690364134
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0. .0..0..0..1. .0..0..1..0. .0..0..1..0. .0..0..0..0 ..0..1..1..0. .0..1..1..0. .1..0..0..1. .1..0..1..0. .0..1..1..0 ..1..1..0..0. .1..1..1..0. .1..1..0..0. .0..1..1..1. .1..1..0..1 ..1..1..0..0. .1..0..0..1. .0..1..1..0. .0..1..0..0. .0..0..0..0 ..0..0..1..0. .0..1..0..0. .1..0..0..1. .0..0..1..0. .1..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A303456.
Formula
Empirical: a(n) = 14*a(n-1) -60*a(n-3) -434*a(n-4) -284*a(n-5) +588*a(n-6) +2516*a(n-7) +2538*a(n-8) +909*a(n-9) -2033*a(n-10) -2841*a(n-11) -1886*a(n-12) -1370*a(n-13) -740*a(n-14) -208*a(n-15)
Comments