cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A303451 Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 232, 1696, 12408, 90800, 664512, 4863312, 35593024, 260494592, 1906482784, 13952986432, 102117809280, 747370269248, 5469783650304, 40031741270784, 292980566109568, 2144238781851392, 15693054372112384, 114852859493121280
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Column 3 of A303456.

Examples

			Some solutions for n=5
..0..0..0. .0..0..1. .0..1..0. .0..1..1. .0..0..0. .0..0..0. .0..0..1
..1..1..0. .1..0..0. .0..1..1. .1..1..1. .0..1..1. .1..0..1. .1..0..0
..1..0..0. .0..0..1. .1..1..0. .1..0..0. .1..0..1. .1..1..0. .1..1..0
..0..0..1. .0..1..0. .1..1..1. .0..1..1. .0..1..1. .1..0..0. .0..1..0
..0..1..0. .1..1..0. .0..0..0. .0..0..0. .0..1..1. .0..1..1. .0..0..0
		

Crossrefs

Cf. A303456.

Formula

Empirical: a(n) = 8*a(n-1) -4*a(n-2) -2*a(n-3) -36*a(n-4) -16*a(n-5)

A303452 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1690, 22756, 306767, 4136339, 55781418, 752277525, 10145443043, 136824986363, 1845271319103, 24886004513970, 335621796861796, 4526318937807297, 61043601702103344, 823256462690364134
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Column 4 of A303456.

Examples

			Some solutions for n=5
..0..0..0..0. .0..0..0..1. .0..0..1..0. .0..0..1..0. .0..0..0..0
..0..1..1..0. .0..1..1..0. .1..0..0..1. .1..0..1..0. .0..1..1..0
..1..1..0..0. .1..1..1..0. .1..1..0..0. .0..1..1..1. .1..1..0..1
..1..1..0..0. .1..0..0..1. .0..1..1..0. .0..1..0..0. .0..0..0..0
..0..0..1..0. .0..1..0..0. .1..0..0..1. .0..0..1..0. .1..1..0..1
		

Crossrefs

Cf. A303456.

Formula

Empirical: a(n) = 14*a(n-1) -60*a(n-3) -434*a(n-4) -284*a(n-5) +588*a(n-6) +2516*a(n-7) +2538*a(n-8) +909*a(n-9) -2033*a(n-10) -2841*a(n-11) -1886*a(n-12) -1370*a(n-13) -740*a(n-14) -208*a(n-15)

A303453 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 12340, 306448, 7626768, 189837638, 4726484016, 117683035940, 2930192820802, 72959325822554, 1816628170742222, 45232591915361348, 1126255602340846336, 28042870875767777390, 698245243223443816298
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Column 5 of A303456.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..1..0. .0..0..0..0..1. .0..0..1..0..1. .0..0..0..1..1
..0..1..1..1..1. .1..0..1..0..0. .1..1..1..1..1. .1..0..1..1..0
..1..1..1..0..0. .0..0..0..0..0. .0..0..1..0..1. .1..0..1..0..0
..0..0..1..1..0. .0..0..1..0..1. .1..0..0..0..0. .1..1..0..0..0
		

Crossrefs

Cf. A303456.

Formula

Empirical: a(n) = 28*a(n-1) -39*a(n-2) -673*a(n-3) -7831*a(n-4) +13152*a(n-5) +196214*a(n-6) +926755*a(n-7) -893464*a(n-8) -13994255*a(n-9) -42382981*a(n-10) +17140014*a(n-11) +373492175*a(n-12) +928613637*a(n-13) +282111616*a(n-14) -4237524647*a(n-15) -11369471860*a(n-16) -9985248178*a(n-17) +17442507044*a(n-18) +68265116747*a(n-19) +92330842512*a(n-20) +22423267806*a(n-21) -143116781632*a(n-22) -290878306168*a(n-23) -279434051729*a(n-24) -76373597104*a(n-25) +207774325051*a(n-26) +383113678476*a(n-27) +283454896488*a(n-28) -87112543739*a(n-29) -438258232360*a(n-30) -394716978521*a(n-31) +18057578774*a(n-32) +316959155044*a(n-33) +214805036106*a(n-34) -28619190824*a(n-35) -94398747368*a(n-36) -23874979472*a(n-37) +20190067380*a(n-38) +12196646640*a(n-39) -1210063296*a(n-40) -2962657472*a(n-41) -765333392*a(n-42) +128606600*a(n-43) +62302928*a(n-44) -9578208*a(n-45) -3013216*a(n-46) +233600*a(n-47)

A303454 Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 90112, 4129588, 189848373, 8727953509, 401405461699, 18461936404456, 849140799884830, 39055765228960644, 1796351602106938846, 82622397275547501377, 3800181265180961967638, 174787695136683295423742
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Column 6 of A303456.

Examples

			Some solutions for n=5
..0..0..1..0..1..0. .0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..1..1..0..1
..0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..1..1..0..0. .0..0..0..0..1..0
..0..0..1..1..0..0. .0..0..1..1..0..1. .0..0..1..1..0..0. .0..0..1..1..1..0
..0..0..0..1..1..0. .0..0..1..0..1..1. .0..0..0..1..1..1. .0..0..1..1..0..0
..0..0..1..1..0..0. .0..0..1..0..0..0. .0..0..1..0..0..1. .0..0..1..1..0..0
		

Crossrefs

Cf. A303456.

A303455 Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 658204, 55681352, 4729712941, 401712282811, 34135836415352, 2900896415900109, 246526793165030703, 20950755659230072765, 1780476037311841468019, 151311828052607951348154
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Column 7 of A303456.

Examples

			Some solutions for n=5
..0..0..0..1..1..1..1. .0..0..0..1..1..1..1. .0..0..0..1..0..1..0
..0..0..0..0..0..0..0. .0..0..0..0..1..0..0. .0..0..0..0..1..0..0
..0..0..0..1..1..0..0. .0..0..0..1..0..1..1. .0..0..0..1..1..0..1
..0..0..0..1..0..0..1. .0..0..0..1..0..1..1. .0..0..0..1..0..0..0
..0..0..0..1..1..1..1. .0..1..0..1..1..0..0. .0..1..0..1..1..0..0
		

Crossrefs

Cf. A303456.

A303457 Number of 3Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 232, 1690, 12340, 90112, 658204, 4807732, 35118024, 256519346, 1873747524, 13686804048, 99975389852, 730271188300, 5334272943080, 38964248230442, 284614727917460, 2078971032009920, 15185864006789660, 110925290484682724
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Row 3 of A303456.

Examples

			Some solutions for n=5
..0..0..1..0..0. .0..0..0..1..0. .0..0..0..0..1. .0..1..0..0..0
..0..0..0..1..0. .0..0..0..1..0. .0..0..1..0..1. .1..1..1..1..0
..1..1..1..1..0. .0..0..0..0..0. .1..1..0..1..0. .1..0..0..0..1
		

Crossrefs

Cf. A303456.

Formula

Empirical: a(n) = 8*a(n-1) -40*a(n-3) +20*a(n-4) +8*a(n-5) -3*a(n-6) +32*a(n-7) for n>8

A303458 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1696, 22756, 306448, 4129588, 55681352, 750838628, 10125474040, 136549176292, 1841478572144, 24833903347572, 334906650542448, 4516506726074020, 60909019475694136, 821411104147953668
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Row 4 of A303456.

Examples

			Some solutions for n=5
..0..0..1..0..0. .0..0..0..0..0. .0..1..0..1..1. .0..1..0..0..1
..0..1..1..1..1. .0..1..0..1..0. .0..0..1..1..1. .0..1..0..0..0
..0..1..1..0..0. .0..1..1..0..1. .1..0..0..0..0. .0..0..0..1..1
..0..0..1..1..1. .0..0..1..1..0. .0..0..1..1..0. .1..0..1..1..1
		

Crossrefs

Cf. A303456.

Formula

Empirical: a(n) = 14*a(n-1) +18*a(n-2) -338*a(n-3) -62*a(n-4) +1192*a(n-5) -648*a(n-6) +1818*a(n-7) +1407*a(n-8) -3144*a(n-9) +3656*a(n-10) -8832*a(n-11) -7324*a(n-12) +8010*a(n-13) +2202*a(n-14) +3312*a(n-15) for n>16

A303459 Number of 5Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 12408, 306767, 7626768, 189848373, 4729712941, 117851999934, 2936875623336, 73188908936110, 1823941673502397, 45454643346741044, 1132781991907637247, 28230245358586758157, 703530728472049344422
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Row 5 of A303456.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..1..0. .0..0..1..1..0. .0..0..1..0..0. .0..0..1..0..0
..0..1..1..0..0. .1..0..1..1..0. .0..1..1..0..0. .0..1..1..0..0
..1..0..0..1..1. .0..1..0..0..0. .0..1..1..1..0. .1..0..1..1..0
..1..1..1..1..1. .0..0..0..1..1. .0..0..0..0..1. .1..0..0..0..1
		

Crossrefs

Cf. A303456.

Formula

Empirical recurrence of order 68 (see link above)

A303460 Number of 6Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 90800, 4136339, 189837638, 8727953509, 401712282811, 18493895768840, 851532898379546, 39209476319247800, 1805462141757826663, 83135813098208900937, 3828149922234369240279, 176274735527226134872745
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Row 6 of A303456.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..1. .0..0..0..0..1
..0..1..0..1..0. .0..1..0..1..0. .1..0..1..0..0. .0..1..0..1..1
..0..0..0..1..1. .1..0..0..1..0. .1..1..0..0..0. .0..1..0..1..1
..0..0..0..1..1. .1..0..1..1..0. .0..1..1..1..1. .1..1..0..0..0
..1..1..1..0..1. .0..0..0..0..0. .0..1..1..0..1. .0..0..1..0..1
		

Crossrefs

Cf. A303456.

A303461 Number of 7 X n 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 664512, 55781418, 4726484016, 401405461699, 34135836415352, 2903926612610439, 247077958107897280, 21023477490350193047, 1788894134950802044639, 152218675999461862651686
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Row 7 of A303456.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..1..0..1..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..0..0. .0..1..0..1..0. .1..1..1..1..1. .1..1..1..1..1
..1..1..1..1..0. .1..1..1..0..1. .0..0..1..1..1. .0..0..0..1..1
..1..0..0..0..1. .0..0..1..1..0. .1..0..0..1..0. .0..1..0..0..1
..0..0..0..1..1. .0..1..0..1..1. .0..0..0..1..1. .1..1..1..0..1
		

Crossrefs

Cf. A303456.
Showing 1-10 of 11 results. Next