cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A303464 Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 29, 170, 1033, 6369, 39098, 240109, 1476141, 9071642, 55751425, 342663945, 2106046874, 12944002597, 79556015733, 488963529146, 3005245731481, 18470721790257, 113523996378746, 697736565265309, 4288400399533821
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Column 3 of A303469.

Examples

			Some solutions for n=5
..0..1..0. .0..0..1. .0..0..1. .0..0..1. .0..1..1. .0..0..1. .0..1..0
..1..1..1. .1..1..1. .1..0..1. .0..1..0. .0..0..1. .1..0..1. .1..1..0
..0..0..0. .1..1..1. .1..0..0. .1..0..0. .1..0..1. .1..0..1. .0..0..0
..1..0..0. .1..0..0. .0..1..0. .0..0..0. .0..0..0. .1..1..0. .1..0..1
..1..1..1. .1..0..1. .0..1..1. .1..0..1. .0..1..1. .1..0..1. .1..0..0
		

Crossrefs

Cf. A303469.

Formula

Empirical: a(n) = 7*a(n-1) -5*a(n-2) +20*a(n-3) -144*a(n-4) +72*a(n-5) for n>6

A303465 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 105, 948, 9110, 89371, 872026, 8511918, 83188773, 812770434, 7941139206, 77594942021, 758189368200, 7408382994582, 72388855049517, 707326301400014, 6911432717332626, 67533080382574931, 659880121609889226
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Column 4 of A303469.

Examples

			Some solutions for n=5
..0..0..0..1. .0..0..0..1. .0..1..0..0. .0..1..0..0. .0..0..1..1
..1..1..0..0. .0..1..1..1. .1..1..1..0. .0..0..1..0. .1..1..0..1
..0..1..0..1. .0..1..0..1. .0..0..1..0. .1..0..1..1. .1..1..0..0
..1..0..0..0. .0..1..0..1. .0..1..0..1. .0..0..1..0. .0..1..0..1
..0..1..0..1. .1..0..1..1. .0..1..0..1. .0..0..1..0. .1..0..0..1
		

Crossrefs

Cf. A303469.

Formula

Empirical: a(n) = 12*a(n-1) -15*a(n-2) +6*a(n-3) -854*a(n-4) +1079*a(n-5) +2906*a(n-6) +9224*a(n-7) -20608*a(n-8) -22133*a(n-9) -8708*a(n-10) +56172*a(n-11) -22130*a(n-12) -37398*a(n-13) +204184*a(n-14) -19940*a(n-15) +45128*a(n-16) -220512*a(n-17) +7920*a(n-18) -23328*a(n-19) +46656*a(n-20) for n>21

A303466 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 384, 5237, 79377, 1243692, 19374638, 302023677, 4716032889, 73624207904, 1149438505997, 17947141691999, 280223342646902, 4375382787383338, 68317349274051360, 1066710022825715053, 16655668791240232192
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Column 5 of A303469.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..1..0. .1..1..0..1..1. .1..1..1..1..1. .0..1..1..0..1
..0..1..0..0..1. .1..1..0..0..0. .0..0..0..1..0. .0..1..0..0..1
..1..0..1..1..0. .0..1..0..0..0. .1..1..0..1..1. .0..1..1..0..0
..1..0..0..1..1. .0..1..0..1..1. .0..0..1..0..1. .1..1..1..0..0
		

Crossrefs

Cf. A303469.

Formula

Empirical recurrence of order 93 (see link above)

A303467 Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 1405, 29009, 692636, 17247543, 427097893, 10589284528, 263136262937, 6538180319944, 162474283068763, 4038093885728800, 100363335141370610, 2494483012817443067, 61999957389103505229, 1541003358426712853022
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Column 6 of A303469.

Examples

			Some solutions for n=5
..0..1..0..1..1..0. .0..1..0..0..1..1. .0..1..0..1..1..1. .0..1..0..1..1..1
..0..0..0..1..0..0. .0..0..0..1..0..1. .0..0..0..1..1..0. .0..0..0..0..1..0
..0..0..0..0..1..1. .0..0..0..1..1..1. .0..1..0..0..0..0. .0..1..0..0..1..1
..1..0..0..0..0..1. .0..1..1..1..0..0. .0..0..0..1..0..1. .0..1..0..1..1..0
..1..0..1..1..1..1. .1..1..0..1..1..0. .1..1..0..1..0..0. .0..1..1..0..0..1
		

Crossrefs

Cf. A303469.

A303468 Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 5135, 160590, 6051850, 239939422, 9459086839, 373571747330, 14793218857797, 585806882371397, 23202000467768644, 919130744522825901, 36411879602020158408, 1442512357425434876243, 57148308915057854768599
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Column 7 of A303469.

Examples

			Some solutions for n=5
..0..1..0..1..0..1..1. .0..0..1..1..1..0..1. .0..1..1..0..1..0..0
..0..1..0..0..0..1..1. .0..0..0..0..1..1..0. .0..0..0..1..1..0..1
..0..0..0..1..0..1..0. .0..0..0..0..1..0..1. .0..0..0..1..0..0..1
..0..0..0..1..1..1..0. .0..0..0..1..1..1..1. .0..0..0..1..0..1..0
..0..1..0..1..0..1..0. .0..1..0..1..0..0..1. .0..1..0..1..1..0..1
		

Crossrefs

Cf. A303469.

A303470 Number of 3Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 170, 948, 5237, 29009, 160590, 888993, 4921496, 27244949, 150826626, 834967061, 4622327859, 25588933014, 141658809728, 784214751260, 4341366231543, 24033545332699, 133048277989004, 736547356196655
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Row 3 of A303469.

Examples

			Some solutions for n=5
..0..0..1..0..1. .0..1..0..0..0. .0..0..1..0..0. .0..1..0..1..1
..0..0..0..0..1. .1..0..1..1..1. .1..1..0..1..0. .1..1..0..1..0
..0..1..0..0..1. .1..0..1..0..0. .0..1..1..0..1. .0..0..1..1..1
		

Crossrefs

Cf. A303469.

Formula

Empirical: a(n) = 3*a(n-1) +15*a(n-2) -32*a(n-4) +5*a(n-5) +53*a(n-6) -14*a(n-7) -10*a(n-8) +19*a(n-9) -5*a(n-10) +8*a(n-11) +a(n-12) -4*a(n-13) -2*a(n-14) for n>15

A303471 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1033, 9110, 79377, 692636, 6051850, 52846843, 461529362, 4030762937, 35202137794, 307434409358, 2684948462398, 23448727446524, 204787130200395, 1788488024787439, 15619582094687097, 136412065575277095
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Row 4 of A303469.

Examples

			Some solutions for n=5
..0..1..0..1..1. .0..1..1..1..0. .0..0..1..0..1. .0..0..0..0..1
..0..0..0..1..0. .0..0..1..0..1. .1..1..0..0..1. .1..1..0..1..0
..0..0..0..0..0. .0..0..1..0..0. .1..1..0..1..1. .1..1..1..1..0
..0..1..0..1..1. .0..1..1..0..0. .1..1..0..0..1. .0..1..0..1..1
		

Crossrefs

Cf. A303469.

Formula

Empirical: a(n) = 5*a(n-1) +46*a(n-2) -45*a(n-3) -626*a(n-4) -454*a(n-5) +3362*a(n-6) +4834*a(n-7) -11974*a(n-8) -5100*a(n-9) +76824*a(n-10) +1064*a(n-11) -279364*a(n-12) -234634*a(n-13) -123891*a(n-14) +61518*a(n-15) +1304955*a(n-16) +1781392*a(n-17) +1362613*a(n-18) +3046799*a(n-19) +2392659*a(n-20) -3703363*a(n-21) -10637854*a(n-22) -16594164*a(n-23) -15747787*a(n-24) +1164554*a(n-25) +14083230*a(n-26) -2759852*a(n-27) -8828997*a(n-28) +23505494*a(n-29) +52936752*a(n-30) +54496267*a(n-31) +18062511*a(n-32) -48471125*a(n-33) -74206110*a(n-34) -23203749*a(n-35) +31338125*a(n-36) +28388603*a(n-37) -334667*a(n-38) -9249716*a(n-39) -2429504*a(n-40) +1208431*a(n-41) +521125*a(n-42) -3517*a(n-43) -5211*a(n-44) -12425*a(n-45) -6830*a(n-46) +132*a(n-47) +481*a(n-48) +48*a(n-49) for n>50

A303472 Number of 5Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 6369, 89371, 1243692, 17247543, 239939422, 3335048493, 46357441983, 644411387300, 8957714227776, 124518113207477, 1730885098566063, 24060449638691425, 334456224185985141, 4649163632178068981
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Row 5 of A303469.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..1
..0..1..1..1..0. .0..1..1..0..0. .0..0..1..1..1. .1..1..1..1..1
..1..0..1..1..0. .1..1..0..0..1. .1..0..1..0..0. .0..0..0..1..0
..1..0..0..0..1. .0..1..0..0..1. .0..0..0..1..1. .1..1..0..1..1
..1..0..1..0..0. .1..1..1..1..1. .0..0..1..0..0. .0..0..1..0..1
		

Crossrefs

Cf. A303469.

A303473 Number of 6Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 39098, 872026, 19374638, 427097893, 9459086839, 209307775365, 4631027050408, 102476059849475, 2267535893974609, 50174934890184604, 1110249088638046980, 24567091613015417289, 543609599779313016247
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Row 6 of A303469.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..1..1. .0..0..1..1..0. .0..0..1..1..0. .0..0..1..1..0
..0..1..0..0..1. .1..0..1..0..1. .1..0..1..1..1. .0..1..0..1..1
..0..1..0..1..0. .0..0..1..0..1. .0..1..0..0..0. .1..1..1..1..0
..0..1..0..1..0. .1..1..0..1..0. .1..1..0..1..1. .1..0..0..1..1
..1..1..1..0..1. .0..1..1..0..0. .0..1..0..0..1. .0..0..0..1..1
		

Crossrefs

Cf. A303469.

A303474 Number of 7Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 240109, 8511918, 302023677, 10589284528, 373571747330, 13168795781782, 464090568326205, 16358580942971076, 576597835196073800, 20323581029125802804, 716356995061667848093, 25249828305783449920908
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Row 7 of A303469.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..1..0. .0..0..1..1..0. .0..0..1..1..0. .0..0..1..1..0
..1..0..1..0..0. .1..0..1..0..0. .1..0..1..0..0. .0..0..0..0..1
..0..1..1..0..1. .0..0..1..0..0. .0..1..1..0..1. .1..0..1..0..0
..1..0..1..0..1. .0..1..1..0..1. .0..1..0..0..1. .1..1..1..1..1
..1..0..0..1..1. .0..0..0..1..1. .0..1..0..1..1. .1..1..0..0..0
..0..1..0..1..0. .0..1..0..1..0. .1..1..0..1..1. .0..1..0..0..1
		

Crossrefs

Cf. A303469.
Showing 1-10 of 11 results. Next