This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303489 #4 Apr 24 2018 19:12:24 %S A303489 1,1,1,1,1,6,1,1,8,60,1,1,10,105,840,1,1,12,162,1920,15120,1,1,14,231, %T A303489 3640,45045,332640,1,1,16,312,6144,104720,1290240,8648640,1,1,18,405, %U A303489 9576,208845,3674160,43648605,259459200,1,1,20,510,14080,375000,8648640,152152000,1703116800,8821612800 %N A303489 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = n! * [x^n] 1/(1 - k*x)^(n/k). %H A303489 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a> %F A303489 A(n,k) = Product_{j=0..n-1} (k*j + n). %e A303489 Square array begins: %e A303489 1, 1, 1, 1, 1, 1, ... %e A303489 1, 1, 1, 1, 1, 1, ... %e A303489 6, 8, 10, 12, 14, 16, ... %e A303489 60, 105, 162, 231, 312, 405, ... %e A303489 840, 1920, 3640, 6144, 9576, 14080, ... %e A303489 15120, 45045, 104720, 208845, 375000, 623645, ... %e A303489 ========================================================= %e A303489 A(1,1) = 1; %e A303489 A(2,1) = 2*3 = 6; %e A303489 A(3,1) = 3*4*5 = 60; %e A303489 A(4,1) = 4*5*6*7 = 840; %e A303489 A(5,1) = 5*6*7*8*9 = 15120, etc. %e A303489 ... %e A303489 A(1,2) = 1; %e A303489 A(2,2) = 2*4 = 8; %e A303489 A(3,2) = 3*5*7 = 105; %e A303489 A(4,2) = 4*6*8*10 = 1920; %e A303489 A(5,2) = 5*7*9*11*13 = 45045, etc. %e A303489 ... %e A303489 A(1,3) = 1; %e A303489 A(2,3) = 2*5 = 10; %e A303489 A(3,3) = 3*6*9 = 162; %e A303489 A(4,3) = 4*7*10*13 = 3640; %e A303489 A(5,3) = 5*8*11*14*17 = 104720, etc. %e A303489 ... %t A303489 Table[Function[k, n! SeriesCoefficient[1/(1 - k x)^(n/k), {x, 0, n}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten %t A303489 Table[Function[k, Product[k i + n, {i, 0, n - 1}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten %t A303489 Table[Function[k, k^n Pochhammer[n/k, n]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten %Y A303489 Columns k=1..5 give A000407, A113551, A303486, A303487, A303488. %Y A303489 Main diagonal gives A061711. %Y A303489 Cf. A008279, A131182, A256268, A265609. %K A303489 nonn,tabl %O A303489 0,6 %A A303489 _Ilya Gutkovskiy_, Apr 24 2018