This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303492 #17 Sep 25 2023 14:59:50 %S A303492 1,2,3,4,6,8,9,10,12,16,18,20,24,27,30,32,36,40,48,60,64,72,80,90,96, %T A303492 100,112,120,128,130,144,160,180,184,190,192,200,224,240,249,256,260, %U A303492 270,279,288,300,306,320,360,384,400,401,408,412,480,512,520,528,558,576,600,612,640 %N A303492 Numbers m such that m divides A302205(m). %e A303492 With k = 18, b = 10010, and x = concat(16,0,0,2,0) = 160020, we find that 160020 / 18 = 8890, so 18 is in this sequence. %o A303492 (Python) %o A303492 k = 1000 %o A303492 seq = [] %o A303492 for i in range(1,k+1): %o A303492 b = bin(i)[2:] %o A303492 c = len(b) %o A303492 x = "" %o A303492 for j in range(c): %o A303492 x += str(int(pow(2,c-j-1)) * int(b[j])) %o A303492 y = float(int(x))/float(i) %o A303492 if y.is_integer(): %o A303492 seq.append(i) %o A303492 print(seq) %o A303492 (PARI) isok(n) = {my(b = binary(n)); s = ""; forstep (k=#b, 1, -1, s = concat(s, Str(b[#b-k+1]*2^(k-1)))); eval(s) % n == 0;} \\ _Michel Marcus_, Apr 26 2018 %Y A303492 Cf. A302205. %K A303492 nonn,base %O A303492 1,2 %A A303492 _J. Stauduhar_, Apr 24 2018 %E A303492 Edited by _N. J. A. Sloane_, Apr 26 2018