cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303495 Decimal expansion of Sum_{p prime} log(p)/p^5.

This page as a plain text file.
%I A303495 #11 Feb 16 2025 08:33:54
%S A303495 0,2,6,8,3,8,6,0,1,2,7,6,7,9,8,3,5,7,4,2,2,1,8,7,5,1,3,2,9,2,4,5,0,1,
%T A303495 5,9,9,4,3,3,3,0,1,4,9,5,5,3,5,5,8,2,2,8,1,2,4,8,1,9,8,0,3,6,0,0,3,3,
%U A303495 5,1,1,5,7,2,3,9,8,6,1,4,6,5,6,6,8,6,2,2,8,3,2,2,6,3,6,3,0,4,4,0
%N A303495 Decimal expansion of Sum_{p prime} log(p)/p^5.
%C A303495 The negated first derivative of the prime zeta function at 5.
%H A303495 R. J. Mathar, <a href="https://arxiv.org/abs/0803.0900">Series of reciprocal powers of k-almost primes</a> arXiv:0803.0900, Table 3.
%H A303495 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a>
%H A303495 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_zeta_function">Prime Zeta Function</a>
%e A303495 0.0268386012767983574221875132924501599433301495535582281248198036...
%t A303495 RealDigits[PrimeZetaP'[5], 10, 99][[1]]
%Y A303495 Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).
%K A303495 nonn,cons
%O A303495 0,2
%A A303495 _Jean-François Alcover_, Apr 25 2018