cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303496 Decimal expansion of Sum_{p prime} log(p)/p^6.

This page as a plain text file.
%I A303496 #11 Feb 16 2025 08:33:54
%S A303496 0,1,2,4,5,9,0,8,0,7,2,2,7,9,9,9,9,1,5,2,7,0,2,7,7,9,2,7,7,4,6,8,9,9,
%T A303496 7,0,0,4,0,9,1,1,3,5,0,4,7,1,5,7,5,8,7,5,8,7,4,1,0,9,3,3,4,0,3,5,1,2,
%U A303496 3,3,9,9,7,9,5,2,0,7,0,2,5,7,1,9,4,0,6,4,0,0,8,6,1,3,1,1,1,3,9,1,4
%N A303496 Decimal expansion of Sum_{p prime} log(p)/p^6.
%C A303496 The negated first derivative of the prime zeta function at 6.
%H A303496 R. J. Mathar, <a href="https://arxiv.org/abs/0803.0900">Series of reciprocal powers of k-almost primes</a> arXiv:0803.0900, Table 3 s=6.
%H A303496 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a>
%H A303496 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_zeta_function">Prime Zeta Function</a>
%e A303496 0.012459080722799991527027792774689970040911350471575875874109334035...
%t A303496 RealDigits[PrimeZetaP'[6], 10, 100][[1]]
%Y A303496 Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).
%K A303496 nonn,cons
%O A303496 0,3
%A A303496 _Jean-François Alcover_, Apr 25 2018