This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303498 #8 Feb 16 2025 08:33:54 %S A303498 0,0,2,8,7,9,5,2,4,7,0,8,7,2,9,2,4,7,3,9,1,3,4,6,0,2,8,4,2,3,8,5,7,3, %T A303498 3,4,0,6,4,9,9,8,9,8,3,7,6,1,6,7,5,8,6,5,8,4,1,0,6,7,6,1,8,2,8,6,1,8, %U A303498 5,3,2,1,4,8,1,5,4,1,8,3,9,9,5,0,4,8,1,2,7,5,6,6,2,9,6,5,0,6,8,2,7,7,4,7,9 %N A303498 Decimal expansion of Sum_{p prime} log(p)/p^8. %C A303498 The negated first derivative of the Prime Zeta function at 8. %H A303498 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a> %H A303498 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_zeta_function">Prime Zeta Function</a> %e A303498 0.00287952470872924739134602842385733406499898376167586584106761828618532... %t A303498 RealDigits[PrimeZetaP'[8], 10, 103][[1]] %o A303498 (PARI) suminf(n=1, p=prime(n); log(p)/p^8) \\ _Michel Marcus_, Apr 25 2018 %Y A303498 Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9). %K A303498 nonn,cons %O A303498 0,3 %A A303498 _Jean-François Alcover_, Apr 25 2018