This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303499 #8 Feb 16 2025 08:33:54 %S A303499 0,0,1,4,1,0,4,9,1,9,2,1,4,2,4,5,3,1,2,9,1,5,5,4,1,9,6,4,5,6,3,0,8,1, %T A303499 9,9,9,7,7,9,0,1,6,5,7,1,3,1,6,9,3,4,9,6,1,9,2,8,3,6,5,0,0,8,2,8,7,7, %U A303499 9,8,3,9,8,7,8,9,0,0,7,5,5,5,7,2,9,1,3,8,4,9,9,1,7,0,6,0,0,6,6,9,6,3,8,6,6 %N A303499 Decimal expansion of Sum_{p prime} log(p)/p^9. %C A303499 The negated first derivative of the Prime Zeta function at 9. %H A303499 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a> %H A303499 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_zeta_function">Prime Zeta Function</a> %e A303499 0.0014104919214245312915541964563081999779016571316934961928365008287798... %t A303499 RealDigits[PrimeZetaP'[9], 10, 103][[1]] %o A303499 (PARI) suminf(n=1, p=prime(n); log(p)/p^9) \\ _Michel Marcus_, Apr 25 2018 %Y A303499 Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9). %K A303499 nonn,cons %O A303499 0,4 %A A303499 _Jean-François Alcover_, Apr 25 2018