A303520 Number of nX3 0..1 arrays with every element equal to 0, 1, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
3, 11, 18, 39, 95, 246, 687, 2023, 6126, 19571, 63599, 209618, 700539, 2356511, 7961506, 26985119, 91629471, 311488830, 1059693975, 3606749879, 12279357318, 41813315995, 142397488591, 484976347386, 1651802107971, 5626099528751
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0. .0..1..1. .0..1..0. .0..1..0. .0..1..0. .0..0..1. .0..1..0 ..0..1..0. .0..0..0. .1..1..0. .0..1..1. .0..1..1. .1..1..1. .0..0..0 ..0..1..1. .0..1..0. .0..1..0. .0..1..0. .0..1..0. .1..0..1. .0..1..0 ..0..1..0. .0..1..0. .0..1..0. .0..1..0. .0..0..0. .1..0..1. .0..1..0 ..0..0..0. .0..0..0. .1..0..0. .0..0..0. .0..1..0. .0..1..1. .0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A303525.
Formula
Empirical: a(n) = 4*a(n-1) -3*a(n-2) +10*a(n-3) -22*a(n-4) +6*a(n-5) -31*a(n-6) +10*a(n-7) -3*a(n-8) -14*a(n-9) -8*a(n-10) -32*a(n-11) -16*a(n-12) for n>15
Comments