cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303521 Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A303521 #4 Apr 25 2018 12:38:20
%S A303521 5,21,37,103,340,1115,4112,16640,71025,320957,1510853,7287031,
%T A303521 35723065,176869202,880763327,4401181230,22037652351,110478062574,
%U A303521 554227859714,2781487076749,13962670138510,70100301160570,351970530142109
%N A303521 Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C A303521 Column 4 of A303525.
%H A303521 R. H. Hardin, <a href="/A303521/b303521.txt">Table of n, a(n) for n = 1..210</a>
%F A303521 Empirical: a(n) = 7*a(n-1) -9*a(n-2) +8*a(n-3) -68*a(n-4) +8*a(n-5) -6*a(n-6) +260*a(n-7) +444*a(n-8) +617*a(n-9) -488*a(n-10) -858*a(n-11) -2426*a(n-12) -1778*a(n-13) -2233*a(n-14) +1090*a(n-15) +2944*a(n-16) +5714*a(n-17) +4242*a(n-18) +1676*a(n-19) -5030*a(n-20) -6560*a(n-21) -3203*a(n-22) +5344*a(n-23) +11678*a(n-24) +10874*a(n-25) +8003*a(n-26) -6178*a(n-27) -11743*a(n-28) -18221*a(n-29) -11933*a(n-30) -7346*a(n-31) +3388*a(n-32) +8166*a(n-33) +9709*a(n-34) +6270*a(n-35) +2172*a(n-36) -1377*a(n-37) -2343*a(n-38) -1877*a(n-39) -576*a(n-40) +51*a(n-41) +210*a(n-42) +170*a(n-43) +22*a(n-44) -13*a(n-45) -31*a(n-46) -9*a(n-47) for n>49
%e A303521 Some solutions for n=5
%e A303521 ..0..1..0..0. .0..1..1..1. .0..0..0..1. .0..1..1..0. .0..1..1..0
%e A303521 ..0..0..1..0. .0..1..0..1. .0..1..1..1. .0..1..0..1. .1..0..1..0
%e A303521 ..1..1..1..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .1..0..1..0
%e A303521 ..1..0..1..1. .0..1..1..1. .0..0..0..1. .0..1..0..1. .1..0..1..0
%e A303521 ..1..0..1..0. .0..1..0..0. .0..1..0..1. .0..1..0..1. .1..0..1..0
%Y A303521 Cf. A303525.
%K A303521 nonn
%O A303521 1,1
%A A303521 _R. H. Hardin_, Apr 25 2018