cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303527 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A303527 #4 Apr 25 2018 12:42:32
%S A303527 8,10,39,103,359,1875,8676,36072,166784,848681,4105851,19152575,
%T A303527 92409752,457395652,2221962919,10661835678,51739845297,253006224877,
%U A303527 1229143772638,5947176017011,28886071524170,140636912306075,683180817411487
%N A303527 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C A303527 Row 4 of A303525.
%H A303527 R. H. Hardin, <a href="/A303527/b303527.txt">Table of n, a(n) for n = 1..210</a>
%F A303527 Empirical: a(n) = 3*a(n-1) +9*a(n-2) -3*a(n-3) +227*a(n-4) -651*a(n-5) -2397*a(n-6) +2477*a(n-7) -10125*a(n-8) +32889*a(n-9) +140430*a(n-10) -139247*a(n-11) +147713*a(n-12) -696247*a(n-13) -3322631*a(n-14) +2870371*a(n-15) -589928*a(n-16) +7378532*a(n-17) +37036533*a(n-18) -28171654*a(n-19) -4215822*a(n-20) -41705374*a(n-21) -201340805*a(n-22) +134959574*a(n-23) +48213202*a(n-24) +117390757*a(n-25) +527791613*a(n-26) -296182026*a(n-27) -143995072*a(n-28) -140279497*a(n-29) -728134284*a(n-30) +310394548*a(n-31) +146571481*a(n-32) +55671622*a(n-33) +702549436*a(n-34) -287100410*a(n-35) -94828128*a(n-36) +214598536*a(n-37) -403974010*a(n-38) -39173927*a(n-39) +37241894*a(n-40) +22203820*a(n-41) +40387406*a(n-42) -42016893*a(n-43) +45319265*a(n-44) -9357240*a(n-45) -14553359*a(n-46) +15173448*a(n-47) -2991486*a(n-48) -1107750*a(n-49) +1176217*a(n-50) -526881*a(n-51) +173233*a(n-52) -21811*a(n-53) -19352*a(n-54) +9547*a(n-55) -1989*a(n-56) +87*a(n-57) +18*a(n-58) for n>60
%e A303527 Some solutions for n=5
%e A303527 ..0..1..1..0..1. .0..1..0..1..0. .0..0..1..1..0. .0..1..0..0..1
%e A303527 ..1..0..1..0..0. .0..1..0..1..0. .0..1..0..1..0. .1..1..0..1..0
%e A303527 ..1..0..1..0..1. .0..1..0..1..0. .0..1..0..1..0. .0..1..0..1..0
%e A303527 ..1..0..1..1..1. .0..1..1..0..0. .1..0..0..1..0. .0..1..0..1..0
%Y A303527 Cf. A303525.
%K A303527 nonn
%O A303527 1,1
%A A303527 _R. H. Hardin_, Apr 25 2018