cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303543 Number of ways to write n as a^2 + b^2 + C(k) + C(m) with 0 <= a <= b and 0 < k <= m, where C(k) denotes the Catalan number binomial(2k,k)/(k+1).

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 4, 4, 2, 3, 5, 5, 2, 3, 5, 5, 4, 3, 6, 8, 4, 3, 6, 6, 3, 3, 5, 7, 6, 3, 4, 8, 5, 2, 6, 7, 3, 4, 5, 5, 6, 4, 5, 10, 6, 4, 7, 8, 4, 2, 7, 9, 9, 5, 7, 11, 8, 2, 5, 11, 5, 4, 4, 8, 8, 4, 6, 11, 10, 3, 6, 8, 5, 5, 6, 7, 6, 6, 5, 9
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 25 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. In other words, any integer n > 1 can be written as the sum of two squares and two Catalan numbers.
This is similar to the author's conjecture in A303540. It has been verified that a(n) > 0 for all n = 2..10^9.

Examples

			a(2) = 1 with 2 = 0^2 + 0^2 + C(1) + C(1).
a(3) = 2 with 3 = 0^2 + 1^2 + C(1) + C(1) = 0^2 + 0^2 + C(1) + C(2).
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    c[n_]:=c[n]=Binomial[2n,n]/(n+1);
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;k=1;Label[bb];If[c[k]>n,Goto[aa]];Do[If[QQ[n-c[k]-c[j]],Do[If[SQ[n-c[k]-c[j]-x^2],r=r+1],{x,0,Sqrt[(n-c[k]-c[j])/2]}]],{j,1,k}];k=k+1;Goto[bb];Label[aa];tab=Append[tab,r],{n,1,80}];Print[tab]