cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303551 Number of aperiodic multisets of compositions of total weight n.

This page as a plain text file.
%I A303551 #11 Sep 17 2018 03:17:13
%S A303551 1,2,6,15,41,95,243,567,1366,3189,7532,17428,40590,93465,215331,
%T A303551 493150,1127978,2569049,5841442,13240351,29953601,67596500,152258270,
%U A303551 342235866,767895382,1719813753,3845442485,8584197657,19133459138,42583565928,94641591888
%N A303551 Number of aperiodic multisets of compositions of total weight n.
%C A303551 A multiset is aperiodic if its multiplicities are relatively prime.
%H A303551 Andrew Howroyd, <a href="/A303551/b303551.txt">Table of n, a(n) for n = 1..1000</a>
%F A303551 a(n) = Sum_{d|n} mu(d) * A034691(n/d).
%e A303551 The a(4) = 15 aperiodic multisets of compositions are:
%e A303551 {4}, {31}, {22}, {211}, {13}, {121}, {112}, {1111},
%e A303551 {1,3}, {1,21}, {1,12}, {1,111}, {2,11},
%e A303551 {1,1,2}, {1,1,11}.
%e A303551 Missing from this list are {1,1,1,1}, {2,2}, and {11,11}.
%p A303551 with(numtheory):
%p A303551 b:= proc(n) option remember; `if`(n=0, 1, add(add(
%p A303551       d*2^(d-1), d=divisors(j))*b(n-j), j=1..n)/n)
%p A303551     end:
%p A303551 a:= n-> add(mobius(d)*b(n/d), d=divisors(n)):
%p A303551 seq(a(n), n=1..35);  # _Alois P. Heinz_, Apr 26 2018
%t A303551 nn=20;
%t A303551 ser=Product[1/(1-x^n)^2^(n-1),{n,nn}]
%t A303551 Table[Sum[MoebiusMu[d]*SeriesCoefficient[ser,{x,0,n/d}],{d,Divisors[n]}],{n,1,nn}]
%o A303551 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
%o A303551 seq(n)={my(u=EulerT(vector(n, n, 2^(n-1)))); vector(n, n, sumdiv(n, d, moebius(d)*u[n/d]))} \\ _Andrew Howroyd_, Sep 15 2018
%Y A303551 Cf. A000740, A000837, A007716, A007916, A034691, A100953, A255906, A269134, A301700, A303386, A303431, A303546, A303552.
%K A303551 nonn
%O A303551 1,2
%A A303551 _Gus Wiseman_, Apr 26 2018