cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303601 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + Bell(k) + Bell(m) with 0 <= a <= b and 0 < k <= m, where Bell(k) denotes the k-th Bell number A000110(k).

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 4, 5, 7, 5, 4, 7, 7, 7, 8, 8, 5, 9, 10, 7, 6, 9, 8, 8, 6, 7, 10, 10, 9, 8, 7, 8, 9, 10, 6, 9, 11, 7, 6, 8, 9, 10, 7, 10, 8, 7, 8, 10, 10, 9, 10, 8, 9, 13, 14, 10, 11, 12, 12, 9, 9, 12, 11, 13, 11, 9
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 26 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. In other words, any integer n > 1 can be expressed as the sum of two triangular numbers and two Bell numbers.
This has been verified for all n = 2..7*10^8. Note that 111277 cannot be written as the sum of two squares and two Bell numbers.
As log(Bell(n)) is asymptotically equivalent to n*log(n), Bell numbers eventually grow faster than any exponential function.
See also A303389, A303540, A303543 and A303637 for similar conjectures.

Examples

			a(2) = 1 with 2 = 0*(0+1)/2 + 0*(0+1)/2 + Bell(1) + Bell(1).
a(3) = 2 with 3 =  0*(0+1)/2 + 1*(1+1)/2 + Bell(1) + Bell(1) = 0*(0+1)/2 + 0*(0+1)/2 + Bell(1) + Bell(2).
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
    b[n_]:=b[n]=BellB[n];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;k=1;Label[bb];If[b[k]>n,Goto[aa]];Do[If[QQ[4(n-b[k]-b[j])+1],Do[If[TQ[n-b[k]-b[j]-x(x+1)/2],r=r+1],{x,0,(Sqrt[4(n-b[k]-b[j])+1]-1)/2}]],{j,1,k}];k=k+1;Goto[bb];Label[aa];
    tab=Append[tab,r],{n,1,70}];Print[tab]