cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303603 a(n) is the maximum distance between primes in Goldbach partitions of 2n, or 2n if there are no Goldbach partitions of 2n.

This page as a plain text file.
%I A303603 #72 Feb 16 2025 08:33:54
%S A303603 0,0,0,2,4,2,8,10,8,14,16,14,20,18,16,26,28,26,24,34,32,38,40,38,44,
%T A303603 42,40,50,48,46,56,58,56,54,64,62,68,70,68,66,76,74,80,78,76,86,84,82,
%U A303603 60,94,92,98,100,98,104,106,104,110,108,106,96,102,100,90,124,122,128,126,124,134,136,134,132
%N A303603 a(n) is the maximum distance between primes in Goldbach partitions of 2n, or 2n if there are no Goldbach partitions of 2n.
%C A303603 The Goldbach Strong Conjecture is true if and only if a(n) = 2n for some n.
%C A303603 Terms are always even numbers because primes present in Goldbach partitions of n > 4 are odd and n = 4 has just one partition (2+2) where difference is 0.
%C A303603 Conjecture: Only first terms are 0 and all further terms are bigger than 0. Excluding a(1), a(n) = 0 iff the only Goldbach partition of 2n is n+n.
%H A303603 Seiichi Manyama, <a href="/A303603/b303603.txt">Table of n, a(n) for n = 1..10000</a>
%H A303603 Marcin Barylski, <a href="/A303603/a303603_2.cpp.txt">C++ program</a>
%H A303603 Marcin Barylski, <a href="/A303603/a303603.png">Maximum distance for even numbers < 10^6</a>
%H A303603 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/GoldbachPartition.html">Goldbach Partition</a>
%F A303603 a(n) = 2 * A047949(n) if A047949(n) > 0 for n >= 2; a(n) = 2n if A047949(n) = -1. - _Alois P. Heinz_, Jun 01 2020
%e A303603 a(1) = 0 for coherence with other related sequences.
%e A303603 a(2) = 0 because 2 * 2 = 4 = 2 + 2 and max_diff = 2 - 2 = 0.
%e A303603 a(8) = 10 because 2 * 8 = 16 = 5 + 11 = 3 + 13 and max_diff = 13 - 3 = 10.
%t A303603 a[1]=a[2]=0;
%t A303603 a[n_]:=Module[{p=3},While[PrimeQ[2*n-p]!=True,p=NextPrime[p]];2*(n-p)];
%t A303603 a/@Range[73] (* _Ivan N. Ianakiev_, Jun 27 2018 *)
%o A303603 (PARI) a(n) = if (n==1, 0, forprime(p=2, , if (isprime(2*n-p), return (2*n-2*p)))); \\ _Michel Marcus_, Jul 02 2018
%Y A303603 Cf. A002372, A002375, A047949, A066285 (minimum distance), A305883.
%K A303603 nonn
%O A303603 1,4
%A A303603 _Marcin Barylski_, Apr 26 2018