This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303608 #30 Jul 21 2021 00:43:55 %S A303608 10,55,91,259,370,385,451,481,505,703,715,1045,1105,1729,2035,2465, %T A303608 2821,2981,3367,4141,4187,5005,5461,6533,6541,6565,6601,7471,7777, %U A303608 8149,8401,8695,8905,8911,10001,10585,11111,12403,13366,13981,14245,14645,14701,14911,15211,15841,18685 %N A303608 Repunit pseudoprimes: composite numbers k such that (10^k - 1)/9 == 1 (mod k). %C A303608 Composite numbers k such that 10^k == 10 (mod 9k). %C A303608 If k is a term, then so is (10^k - 1)/9. Thus, the sequence is infinite. %C A303608 No terms are divisible by 3. - _Robert Israel_, May 28 2018 %H A303608 Robert Israel, <a href="/A303608/b303608.txt">Table of n, a(n) for n = 1..4130</a> %e A303608 (10^10 - 1)/9 = 1111111111 == 1 (mod 10), so the composite 10 is a term. %e A303608 Equivalently, we have the congruence 10^10 == 10 (mod 9*10). %p A303608 filter:= n -> n mod 3 <> 0 and (10&^n - 10) mod n = 0\ and not isprime(n): %p A303608 select(filter,[$4..10^5]); # _Robert Israel_, May 28 2018 %t A303608 Select[Range@ 20000, ! PrimeQ@# && PowerMod[10, #, 9 #] == 10 &] (* _Robert G. Wilson v_, Apr 28 2018 *) %o A303608 (PARI) isok(n) = (n>1) && !isprime(n) && Mod(10, 9*n)^n == 10; \\ _Michel Marcus_, Apr 28 2018 %Y A303608 A000864 is a subsequence. %Y A303608 Composite numbers in A067934. - _Michel Marcus_, Apr 27 2018 %K A303608 nonn %O A303608 1,1 %A A303608 _Thomas Ordowski_, Apr 27 2018 %E A303608 a(4) onward from _Robert G. Wilson v_, Apr 27 2018