This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303610 #27 Jul 05 2018 00:56:15 %S A303610 10,1010,110100,11010100,1101100100,110110100100,11101010101000, %T A303610 1110110101001000,111011010101001000,11101101101001001000, %U A303610 1110111010101010001000,111011101010101010001000,11110110110101010010010000,1111011011010101010010010000,111101110101101010010100010000 %N A303610 Circle aliasing numbers with 1/n size steps. %C A303610 Starting from [-1,0] taking 2*n steps of length 1/n each either up or right, follow the path staying as close to the unit circle as possible. Every step up is considered a 1, every step right is considered a 0. %e A303610 For n=3, we have 110100, meaning if we were to start at [-1, 0] and take 2*n=6 steps of length 1/n = 1/6 which can either be up or to the right, to follow the path of the unit circle the closest we would move up 1, up 1 again, then right, then up again, then right two more times, which we translate to the binary number 110100. %o A303610 (Python) %o A303610 def closer(pos1, pos2): %o A303610 dpos1 = (pos1[0]**2.0+pos1[1]**2.0)**.5 %o A303610 dpos2 = (pos2[0]**2.0+pos2[1]**2.0)**.5 %o A303610 if (1.0-dpos1)**2.0 < (1.0-dpos2)**2.0: %o A303610 return True %o A303610 else: %o A303610 return False %o A303610 def converts(path): %o A303610 return ''.join(path) %o A303610 l = [] %o A303610 for steps in range(1, 20): %o A303610 stepsize = 1.0/steps %o A303610 pos = [-1.0, 0.0] %o A303610 paths = [] %o A303610 for i in range(0, 2*steps): %o A303610 if closer([pos[0]+stepsize, pos[1]], [pos[0], pos[1]+stepsize]): %o A303610 pos = [pos[0]+stepsize, pos[1]] %o A303610 paths.append(str(0)) %o A303610 else: %o A303610 pos = [pos[0], pos[1]+stepsize] %o A303610 paths.append(str(1)) %o A303610 l.append(int(converts(paths))) %o A303610 print(l) %Y A303610 Subsequence of A035928 in binary. %K A303610 nonn %O A303610 1,1 %A A303610 _Ben Paul Thurston_, May 06 2018