A303620 Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1, 20, 68, 325, 1870, 10741, 62207, 363485, 2135551, 12586013, 74323727, 439462339, 2600501501, 15395919313, 91177465195, 540072985865, 3199404347759, 18954749501705, 112301887289875, 665378205627245, 3942374534440139
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..1..1. .0..0..0..0. .0..1..1..0. .0..1..1..0. .0..1..1..0 ..0..1..1..1. .0..0..0..0. .1..1..1..1. .1..1..1..0. .1..1..1..0 ..0..1..1..1. .1..0..0..1. .1..1..1..0. .1..1..1..1. .1..1..1..1 ..1..1..1..1. .1..0..0..1. .0..1..1..1. .0..0..1..0. .0..1..0..0 ..0..1..1..1. .0..0..0..1. .1..1..1..1. .0..0..1..0. .0..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A303624.
Formula
Empirical: a(n) = 9*a(n-1) -19*a(n-2) +19*a(n-3) -91*a(n-4) +33*a(n-5) -46*a(n-6) +295*a(n-7) +125*a(n-8) +527*a(n-9) -181*a(n-10) -44*a(n-11) -219*a(n-12) -360*a(n-13) +52*a(n-14) -131*a(n-15) -93*a(n-16) +23*a(n-17) +10*a(n-18) +70*a(n-19) +14*a(n-20) -16*a(n-21) +24*a(n-22) for n>24
Comments