This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303624 #4 Apr 27 2018 09:55:45 %S A303624 1,1,2,1,2,4,1,12,2,8,1,20,38,3,16,1,72,68,148,6,32,1,168,362,325,616, %T A303624 10,64,1,496,1283,3591,1870,2520,21,128,1,1296,5411,19467,37910,10741, %U A303624 10288,42,256,1,3616,22516,160807,350410,398859,62207,42100,86,512,1,9760 %N A303624 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A303624 Table starts %C A303624 ...1..1......1.......1.........1...........1.............1................1 %C A303624 ...2..2.....12......20........72.........168...........496.............1296 %C A303624 ...4..2.....38......68.......362........1283..........5411............22516 %C A303624 ...8..3....148.....325......3591.......19467........160807..........1173612 %C A303624 ..16..6....616....1870.....37910......350410.......5249045.........70522741 %C A303624 ..32.10...2520...10741....398859.....6446485.....179884814.......4470005178 %C A303624 ..64.21..10288...62207...4288358...122517773....6323564388.....290118140045 %C A303624 .128.42..42100..363485..46208517..2348299355..224091914399...18955122420980 %C A303624 .256.86.172268.2135551.499581127.45211204167.7966090548780.1240883902751147 %H A303624 R. H. Hardin, <a href="/A303624/b303624.txt">Table of n, a(n) for n = 1..180</a> %F A303624 Empirical for column k: %F A303624 k=1: a(n) = 2*a(n-1) %F A303624 k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5) %F A303624 k=3: a(n) = 5*a(n-1) -5*a(n-2) +8*a(n-3) -12*a(n-4) +4*a(n-5) -4*a(n-6) for n>8 %F A303624 k=4: [order 22] for n>24 %F A303624 k=5: [order 62] for n>65 %F A303624 Empirical for row n: %F A303624 n=1: a(n) = a(n-1) %F A303624 n=2: a(n) = 2*a(n-1) +4*a(n-2) -4*a(n-3) -4*a(n-4) %F A303624 n=3: [order 16] for n>17 %F A303624 n=4: [order 43] for n>44 %e A303624 Some solutions for n=5 k=4 %e A303624 ..0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..1. .0..0..0..1 %e A303624 ..0..0..1..1. .0..0..0..0. .0..0..1..1. .1..0..0..0. .0..0..0..1 %e A303624 ..0..0..1..1. .1..1..0..0. .1..1..1..1. .0..0..0..1. .1..0..0..0 %e A303624 ..1..1..1..1. .0..1..1..1. .1..1..1..1. .0..0..0..1. .0..0..0..1 %e A303624 ..0..1..1..1. .0..1..1..1. .0..1..1..0. .1..0..0..0. .0..0..0..0 %Y A303624 Column 1 is A000079(n-1). %Y A303624 Column 2 is A240513(n-2). %Y A303624 Row 2 is A302368. %K A303624 nonn,tabl %O A303624 1,3 %A A303624 _R. H. Hardin_, Apr 27 2018