cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303624 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A303624 #4 Apr 27 2018 09:55:45
%S A303624 1,1,2,1,2,4,1,12,2,8,1,20,38,3,16,1,72,68,148,6,32,1,168,362,325,616,
%T A303624 10,64,1,496,1283,3591,1870,2520,21,128,1,1296,5411,19467,37910,10741,
%U A303624 10288,42,256,1,3616,22516,160807,350410,398859,62207,42100,86,512,1,9760
%N A303624 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C A303624 Table starts
%C A303624 ...1..1......1.......1.........1...........1.............1................1
%C A303624 ...2..2.....12......20........72.........168...........496.............1296
%C A303624 ...4..2.....38......68.......362........1283..........5411............22516
%C A303624 ...8..3....148.....325......3591.......19467........160807..........1173612
%C A303624 ..16..6....616....1870.....37910......350410.......5249045.........70522741
%C A303624 ..32.10...2520...10741....398859.....6446485.....179884814.......4470005178
%C A303624 ..64.21..10288...62207...4288358...122517773....6323564388.....290118140045
%C A303624 .128.42..42100..363485..46208517..2348299355..224091914399...18955122420980
%C A303624 .256.86.172268.2135551.499581127.45211204167.7966090548780.1240883902751147
%H A303624 R. H. Hardin, <a href="/A303624/b303624.txt">Table of n, a(n) for n = 1..180</a>
%F A303624 Empirical for column k:
%F A303624 k=1: a(n) = 2*a(n-1)
%F A303624 k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
%F A303624 k=3: a(n) = 5*a(n-1) -5*a(n-2) +8*a(n-3) -12*a(n-4) +4*a(n-5) -4*a(n-6) for n>8
%F A303624 k=4: [order 22] for n>24
%F A303624 k=5: [order 62] for n>65
%F A303624 Empirical for row n:
%F A303624 n=1: a(n) = a(n-1)
%F A303624 n=2: a(n) = 2*a(n-1) +4*a(n-2) -4*a(n-3) -4*a(n-4)
%F A303624 n=3: [order 16] for n>17
%F A303624 n=4: [order 43] for n>44
%e A303624 Some solutions for n=5 k=4
%e A303624 ..0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..1. .0..0..0..1
%e A303624 ..0..0..1..1. .0..0..0..0. .0..0..1..1. .1..0..0..0. .0..0..0..1
%e A303624 ..0..0..1..1. .1..1..0..0. .1..1..1..1. .0..0..0..1. .1..0..0..0
%e A303624 ..1..1..1..1. .0..1..1..1. .1..1..1..1. .0..0..0..1. .0..0..0..1
%e A303624 ..0..1..1..1. .0..1..1..1. .0..1..1..0. .1..0..0..0. .0..0..0..0
%Y A303624 Column 1 is A000079(n-1).
%Y A303624 Column 2 is A240513(n-2).
%Y A303624 Row 2 is A302368.
%K A303624 nonn,tabl
%O A303624 1,3
%A A303624 _R. H. Hardin_, Apr 27 2018