cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A303619 Number of nX3 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 12, 38, 148, 616, 2520, 10288, 42100, 172268, 704776, 2883500, 11797636, 48268920, 197487780, 808003420, 3305872824, 13525678764, 55339088836, 226414867352, 926355911364, 3790101263196, 15506855855704, 63444895485516
Offset: 1

Views

Author

R. H. Hardin, Apr 27 2018

Keywords

Comments

Column 3 of A303624.

Examples

			Some solutions for n=5
..0..1..1. .0..1..0. .0..0..1. .0..1..1. .0..0..0. .0..0..0. .0..0..0
..1..1..1. .1..1..1. .0..0..1. .0..1..1. .0..0..0. .0..0..0. .0..0..1
..0..1..0. .0..1..1. .1..0..0. .1..1..1. .0..0..1. .1..0..0. .0..0..1
..0..1..1. .1..1..1. .0..0..0. .1..1..0. .1..0..0. .0..0..0. .1..0..0
..1..1..0. .1..1..1. .0..0..1. .1..1..1. .0..0..1. .1..0..1. .0..0..0
		

Crossrefs

Cf. A303624.

Formula

Empirical: a(n) = 5*a(n-1) -5*a(n-2) +8*a(n-3) -12*a(n-4) +4*a(n-5) -4*a(n-6) for n>8

A303620 Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 20, 68, 325, 1870, 10741, 62207, 363485, 2135551, 12586013, 74323727, 439462339, 2600501501, 15395919313, 91177465195, 540072985865, 3199404347759, 18954749501705, 112301887289875, 665378205627245, 3942374534440139
Offset: 1

Views

Author

R. H. Hardin, Apr 27 2018

Keywords

Comments

Column 4 of A303624.

Examples

			Some solutions for n=5
..0..1..1..1. .0..0..0..0. .0..1..1..0. .0..1..1..0. .0..1..1..0
..0..1..1..1. .0..0..0..0. .1..1..1..1. .1..1..1..0. .1..1..1..0
..0..1..1..1. .1..0..0..1. .1..1..1..0. .1..1..1..1. .1..1..1..1
..1..1..1..1. .1..0..0..1. .0..1..1..1. .0..0..1..0. .0..1..0..0
..0..1..1..1. .0..0..0..1. .1..1..1..1. .0..0..1..0. .0..1..0..0
		

Crossrefs

Cf. A303624.

Formula

Empirical: a(n) = 9*a(n-1) -19*a(n-2) +19*a(n-3) -91*a(n-4) +33*a(n-5) -46*a(n-6) +295*a(n-7) +125*a(n-8) +527*a(n-9) -181*a(n-10) -44*a(n-11) -219*a(n-12) -360*a(n-13) +52*a(n-14) -131*a(n-15) -93*a(n-16) +23*a(n-17) +10*a(n-18) +70*a(n-19) +14*a(n-20) -16*a(n-21) +24*a(n-22) for n>24

A303621 Number of nX5 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 72, 362, 3591, 37910, 398859, 4288358, 46208517, 499581127, 5409406326, 58631184705, 635886643605, 6899110045327, 74869703068990, 812605582421642, 8820444837792716, 95746681645850346, 1039371314814583752
Offset: 1

Views

Author

R. H. Hardin, Apr 27 2018

Keywords

Comments

Column 5 of A303624.

Examples

			Some solutions for n=5
..0..0..0..0..1. .0..0..0..1..1. .0..1..0..1..0. .0..1..1..1..1
..0..0..1..0..0. .1..0..0..1..1. .1..1..1..1..1. .1..1..0..1..1
..1..0..0..0..0. .1..0..0..1..1. .1..1..1..1..0. .1..1..1..1..1
..0..0..0..0..0. .0..0..0..1..1. .0..0..0..1..1. .0..1..0..1..0
..0..0..1..0..1. .0..0..1..1..0. .1..0..1..1..1. .0..1..0..1..0
		

Crossrefs

Cf. A303624.

Formula

Empirical: a(n) = 18*a(n-1) -88*a(n-2) +181*a(n-3) -901*a(n-4) +2154*a(n-5) -5035*a(n-6) +16596*a(n-7) -31806*a(n-8) +103835*a(n-9) -174793*a(n-10) +639689*a(n-11) -1015298*a(n-12) +2098982*a(n-13) -4679516*a(n-14) +681361*a(n-15) -12613662*a(n-16) -15526763*a(n-17) -10360518*a(n-18) -10900003*a(n-19) +93523754*a(n-20) +138980544*a(n-21) +294248039*a(n-22) +139392842*a(n-23) -25962616*a(n-24) -556388985*a(n-25) -738814401*a(n-26) -757930815*a(n-27) -359173350*a(n-28) +112140113*a(n-29) +449650391*a(n-30) +477280826*a(n-31) +290561830*a(n-32) +179957648*a(n-33) +43958819*a(n-34) +40164342*a(n-35) +66281759*a(n-36) +44868212*a(n-37) -71504876*a(n-38) -132574315*a(n-39) -159275867*a(n-40) -34904367*a(n-41) +75249340*a(n-42) +59334276*a(n-43) +13210549*a(n-44) -10299119*a(n-45) -21088861*a(n-46) -10663095*a(n-47) +6436916*a(n-48) +5938447*a(n-49) +1623325*a(n-50) -91939*a(n-51) +526515*a(n-52) +437625*a(n-53) +225322*a(n-54) +81564*a(n-55) +1567*a(n-56) +1935*a(n-57) +4592*a(n-58) -116*a(n-59) -232*a(n-60) +144*a(n-61) -64*a(n-62) for n>65

A303622 Number of nX6 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 168, 1283, 19467, 350410, 6446485, 122517773, 2348299355, 45211204167, 872116776878, 16840012914187, 325325036804019, 6286301532328358, 121485138860397708, 2347880112852680240, 45377538348278054960
Offset: 1

Views

Author

R. H. Hardin, Apr 27 2018

Keywords

Comments

Column 6 of A303624.

Examples

			Some solutions for n=5
..0..0..0..0..0..0. .0..0..0..0..0..0. .0..0..0..0..1..1. .0..0..1..1..0..0
..0..0..0..1..0..0. .0..0..1..1..0..0. .0..0..0..0..1..1. .0..0..1..1..0..0
..0..1..0..0..0..0. .0..0..1..1..0..0. .0..0..0..1..1..1. .1..0..0..1..0..0
..0..0..0..1..0..1. .1..0..0..1..1..1. .0..0..0..0..1..0. .0..0..0..1..1..1
..1..0..0..1..0..1. .1..0..0..1..1..0. .1..0..0..0..1..0. .0..0..0..1..1..1
		

Crossrefs

Cf. A303624.

A303623 Number of nX7 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 496, 5411, 160807, 5249045, 179884814, 6323564388, 224091914399, 7966090548780, 283582960504149, 10101258867472961, 359903623078870120, 12824695714808614687, 457013934122432156738, 16286250681449999285061
Offset: 1

Views

Author

R. H. Hardin, Apr 27 2018

Keywords

Comments

Column 7 of A303624.

Examples

			Some solutions for n=5
..0..0..0..0..0..1..1. .0..0..1..0..0..0..1. .0..0..0..0..0..0..0
..0..0..0..0..1..1..1. .0..0..0..0..0..0..0. .0..0..0..1..0..0..0
..0..0..0..0..0..1..1. .0..0..0..0..0..0..0. .0..0..0..0..0..0..0
..0..0..0..1..1..1..0. .0..0..0..0..0..1..1. .0..0..0..0..0..0..0
..0..0..1..1..1..1..0. .0..0..0..0..1..1..1. .0..0..0..0..0..0..0
		

Crossrefs

Cf. A303624.

A303625 Number of 3Xn 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 2, 38, 68, 362, 1283, 5411, 22516, 96189, 417555, 1829258, 8090336, 35972626, 160686336, 719920275, 3232692431, 14538525542, 65457371351, 294941937573, 1329700498750, 5997079537476, 27054800037678, 122076548954830
Offset: 1

Views

Author

R. H. Hardin, Apr 27 2018

Keywords

Comments

Row 3 of A303624.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..1..0..1. .0..0..1..1..0. .0..1..1..1..1
..0..0..0..0..1. .0..0..1..0..1. .0..0..0..1..1. .0..1..1..1..1
..1..0..1..0..0. .1..0..0..0..0. .0..0..0..1..1. .1..1..0..1..1
		

Crossrefs

Cf. A303624.

Formula

Empirical: a(n) = 8*a(n-1) -9*a(n-2) -54*a(n-3) +79*a(n-4) +193*a(n-5) -246*a(n-6) -383*a(n-7) +307*a(n-8) +547*a(n-9) -250*a(n-10) -458*a(n-11) +174*a(n-12) +193*a(n-13) -66*a(n-14) -34*a(n-15) -3*a(n-16) for n>17

A303626 Number of 4Xn 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 3, 148, 325, 3591, 19467, 160807, 1173612, 9421103, 75073653, 610163560, 4982200456, 40884018586, 336380001790, 2772144413449, 22869613342371, 188783964530800, 1558985724471489, 12877140629903061, 106380021298938000
Offset: 1

Views

Author

R. H. Hardin, Apr 27 2018

Keywords

Comments

Row 4 of A303624.

Examples

			Some solutions for n=5
..0..1..1..1..1. .0..0..0..0..0. .0..0..0..0..0. .0..0..1..0..1
..0..1..1..1..1. .0..0..0..0..0. .0..0..1..0..1. .0..0..0..0..0
..0..1..1..1..0. .1..1..1..1..1. .0..0..0..0..1. .0..0..0..1..1
..1..1..0..1..1. .0..1..1..1..1. .0..0..0..0..1. .1..0..0..1..1
		

Crossrefs

Cf. A303624.

Formula

Empirical: a(n) = 16*a(n-1) -39*a(n-2) -486*a(n-3) +2076*a(n-4) +6509*a(n-5) -36557*a(n-6) -51456*a(n-7) +351943*a(n-8) +315012*a(n-9) -2226007*a(n-10) -1747803*a(n-11) +10471115*a(n-12) +7461453*a(n-13) -38373678*a(n-14) -20050380*a(n-15) +107152786*a(n-16) +28648842*a(n-17) -222622519*a(n-18) -3530085*a(n-19) +339517313*a(n-20) -76201625*a(n-21) -361639017*a(n-22) +183843854*a(n-23) +214443094*a(n-24) -255187688*a(n-25) +57118500*a(n-26) +258024061*a(n-27) -306102478*a(n-28) -223408872*a(n-29) +409718455*a(n-30) +187726094*a(n-31) -344439874*a(n-32) -146637084*a(n-33) +189433554*a(n-34) +89003404*a(n-35) -61685576*a(n-36) -35202400*a(n-37) +8565840*a(n-38) +7517168*a(n-39) +603968*a(n-40) -519744*a(n-41) -231936*a(n-42) -40960*a(n-43) for n>44

A303627 Number of 5Xn 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 6, 616, 1870, 37910, 350410, 5249045, 70522741, 1042683911, 15412143256, 231857391297, 3507294376595, 53265758197769, 810914386664759, 12360167854003888, 188554666107041773, 2877613349788302762
Offset: 1

Views

Author

R. H. Hardin, Apr 27 2018

Keywords

Comments

Row 5 of A303624.

Examples

			Some solutions for n=5
..0..0..0..1..1. .0..1..1..1..0. .0..0..0..1..1. .0..0..0..0..1
..0..0..1..1..0. .1..1..1..1..1. .1..0..0..1..1. .0..0..1..0..0
..1..1..1..1..1. .0..0..1..0..0. .1..0..1..1..1. .1..1..0..1..1
..0..1..0..0..0. .1..0..0..0..1. .0..0..0..1..1. .0..1..1..1..0
..0..1..0..0..1. .0..0..1..0..0. .1..0..1..1..1. .1..1..0..1..1
		

Crossrefs

Cf. A303624.

A303628 Number of 6Xn 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 10, 2520, 10741, 398859, 6446485, 179884814, 4470005178, 122594183754, 3358212405222, 93494167786193, 2615702793245652, 73423169266382719, 2065363849547312414, 58153976434030392443, 1638589480520177365526
Offset: 1

Views

Author

R. H. Hardin, Apr 27 2018

Keywords

Comments

Row 6 of A303624.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..1..1. .0..0..0..0..1. .0..0..0..1..0
..0..0..0..0..1. .0..0..0..1..1. .0..0..0..0..0. .0..0..0..1..0
..1..1..0..0..0. .1..1..1..0..0. .0..0..1..0..0. .0..0..1..1..1
..1..1..1..0..0. .1..1..1..0..0. .0..1..1..1..1. .0..0..0..1..0
..1..1..1..1..1. .0..0..0..0..0. .0..0..1..1..0. .0..0..1..1..0
..0..1..0..1..1. .1..0..1..0..0. .0..0..0..1..1. .0..0..0..1..1
		

Crossrefs

Cf. A303624.

A303629 Number of 7Xn 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 21, 10288, 62207, 4288358, 122517773, 6323564388, 290118140045, 14717695448165, 745702210079702, 38382642404113793, 1985085140054551129, 102986990515395922403, 5353920883901539271717, 278582161093558674832024
Offset: 1

Views

Author

R. H. Hardin, Apr 27 2018

Keywords

Comments

Row 7 of A303624.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..1..0..1..0. .0..0..0..0..0. .1..1..0..1..0. .0..0..1..1..1
..0..0..0..0..0. .0..0..1..0..0. .1..1..0..0..0. .1..1..1..1..0
..0..0..1..0..0. .1..1..0..1..1. .1..0..1..0..1. .1..1..0..1..0
..0..0..1..0..0. .1..1..1..1..0. .1..1..0..0..1. .0..1..1..1..1
..0..0..1..0..0. .1..1..1..1..1. .0..1..1..0..0. .1..1..0..1..1
		

Crossrefs

Cf. A303624.
Showing 1-10 of 11 results. Next