This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303638 #20 Jul 22 2019 05:45:13 %S A303638 1,2,0,6,0,3,24,0,12,8,120,0,540,40,0,720,0,6120,240,0,144,5040,0, %T A303638 83160,1680,0,1008,840,40320,0,1310400,13440,0,8064,6720,5760,362880, %U A303638 0,321012720,120960,0,72576,60480,51840,0,3628800,0,9394509600,207648000,0,725760,604800,518400,0,0 %N A303638 Coefficients of a representation of gamma_{n-1}(1) - gamma_{n-1}(n) where gamma_n(x) are the generalized Euler-Stieltjes constants, triangle read by rows, for n >= 1 and 0 <= k <= n-1. %H A303638 Wikipedia, <a href="https://en.wikipedia.org/wiki/Stieltjes_constants#Generalized_Stieltjes_constants">Generalized Stieltjes constants</a> %F A303638 gamma_{n-1}(1) - gamma_{n-1}(n) = (1/n!) Sum_{k=1..n-1} T(n,k)*(log(k))^(n-1) where T(n, k) = 0 if k is a prime power (in the sense of A025475). %F A303638 -Gamma(n)*B^(n)(0,n) = n!*gamma_{n-1} - Sum_{k=1..n-1} T(n,k)(log(k))^(n-1) where Gamma(n) is Euler's Gamma function and B^(n)(0,n) is the n-th derivative of the generalized Bernoulli function B(s, a) with respect to s. %F A303638 Four cases can be distinguished: %F A303638 (1) If k=0 then T(n, k) = n!, %F A303638 (2) else if k is prime then T(n, k) = Sum_{v=1..m} v^(n-1)*k^(-v) where m = ilog_k(n-1) and ilog is the integer base k logarithm, %F A303638 (3) else if k is a prime power in the sense of A025475 then T(n, k) = 0, %F A303638 (4) else (k is composite but not a prime power) T(n, k) = n!/k. %e A303638 The triangle starts: %e A303638 [n\k][ 0 1 2 3 4 5 6 7 8 9] %e A303638 [ 1] [ 1] %e A303638 [ 2] [ 2, 0] %e A303638 [ 3] [ 6, 0, 3] %e A303638 [ 4] [ 24, 0, 12, 8] %e A303638 [ 5] [ 120, 0, 540, 40, 0] %e A303638 [ 6] [ 720, 0, 6120, 240, 0, 144] %e A303638 [ 7] [ 5040, 0, 83160, 1680, 0, 1008, 840] %e A303638 [ 8] [ 40320, 0, 1310400, 13440, 0, 8064, 6720, 5760] %e A303638 [ 9] [ 362880, 0, 321012720, 120960, 0, 72576, 60480, 51840, 0] %e A303638 [10] [3628800, 0, 9394509600, 207648000, 0, 725760, 604800, 518400, 0, 0] %p A303638 Trow := proc(n) local h, r, e, f; %p A303638 h := (n, k) -> `if`(k = 1, x[0], h(n, k-1) - log(k-1)^n/(k-1)); %p A303638 r := `if`(n = 0, 1, n!*h(n-1,n)); f := k -> (-x[k])^(1/(n-1)); %p A303638 e := eval(subs(ln = f, r)); seq(coeff(e, x[i]), i=0..n-1) end: %p A303638 seq(Trow(n), n=1..10); %p A303638 # Alternative: %p A303638 T := proc(n, k) local ispp, omega: %p A303638 omega := n -> nops(numtheory:-factorset(n)): %p A303638 ispp := n -> not isprime(n) and omega(n) = 1: %p A303638 if k = 0 then return n! fi; %p A303638 if isprime(k) then %p A303638 add(v^(n-1)*k^(-v), v=1..ilog[k](n-1)): %p A303638 return n!*% fi: %p A303638 if k = 1 or ispp(k) then return 0 fi: %p A303638 return n!/k end: %p A303638 seq(seq(T(n,k), k=(0..n-1)), n=1..10); %t A303638 T[n_, k_] := Module[{s}, If[k == 0, Return[n!]]; If[PrimeQ[k], s = Sum[v^(n-1) k^(-v), {v, 1, Log[k, n-1]}]; Return[n! s]]; If[k == 1 || PrimePowerQ[k], Return[0]]; n!/k]; %t A303638 Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* _Jean-François Alcover_, Jul 22 2019, from 2nd Maple program *) %Y A303638 See the cross-references in A301816 for the values of some Stieltjes constants. %Y A303638 Row sums are A303938. %K A303638 nonn,tabl %O A303638 1,2 %A A303638 _Peter Luschny_, Apr 27 2018