A303656 Number of ways to write n as a^2 + b^2 + 3^c + 5^d, where a,b,c,d are nonnegative integers with a <= b.
0, 1, 1, 2, 1, 3, 2, 3, 2, 4, 3, 4, 2, 4, 4, 3, 2, 4, 4, 3, 2, 4, 3, 4, 1, 4, 5, 6, 4, 6, 5, 5, 6, 6, 5, 8, 4, 6, 6, 5, 4, 7, 5, 7, 5, 6, 4, 5, 3, 4, 7, 6, 7, 8, 5, 4, 7, 5, 5, 9, 3, 6, 5, 6, 4, 6, 5, 7, 7, 4, 5, 5, 5, 4, 6, 5, 6, 10, 5, 4, 5, 7, 4, 9, 2, 9, 8, 5, 6, 6
Offset: 1
Keywords
Examples
a(2) = 1 with 2 = 0^2 + 0^2 + 3^0 + 5^0. a(5) = 1 with 5 = 0^2 + 1^2 + 3^1 + 5^0. a(25) = 1 with 25 = 1^2 + 4^2 + 3^1 + 5^1.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
- Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; f[n_]:=f[n]=FactorInteger[n]; g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0; QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]); tab={};Do[r=0;Do[If[QQ[n-3^k-5^m],Do[If[SQ[n-3^k-5^m-x^2],r=r+1],{x,0,Sqrt[(n-3^k-5^m)/2]}]],{k,0,Log[3,n]},{m,0,If[n==3^k,-1,Log[5,n-3^k]]}];tab=Append[tab,r],{n,1,90}];Print[tab]
Comments