This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303664 #6 Apr 28 2018 17:13:50 %S A303664 1,2,3,6,9,14,25,38,57,84,141,206,307,440,633,984,1419,2036,2887,4064, %T A303664 5619,8370,11667,16424,22717,31478,42783,58386,82701,113162,155029, %U A303664 210770,285645,383688,514497,682922,940327,1256300,1687365,2245692,2997183,3955448,5233315,6854588,8978175,11998806 %N A303664 Expansion of (1/(1 - x))*Sum_{k>=0} k!*x^(k*(k+1)/2)/Product_{j=1..k} (1 - x^j). %C A303664 Partial sums of A032020. %H A303664 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %p A303664 T:= proc(n, k) option remember; `if`(k<0 or n<0, 0, %p A303664 `if`(k=0, `if`(n=0, 1, 0), T(n-k, k) +k*T(n-k, k-1))) %p A303664 end: %p A303664 b:= n-> add(T(n, k), k=0..floor((sqrt(8*n+1)-1)/2)): %p A303664 a:= proc(n) option remember; %p A303664 `if`(n<0, 0, b(n)+a(n-1)) %p A303664 end: %p A303664 seq(a(n), n=0..50); # _Alois P. Heinz_, Apr 28 2018 %t A303664 nmax = 45; CoefficientList[Series[1/(1 - x) Sum[k! x^(k (k + 1)/2)/Product[1 - x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] %Y A303664 Cf. A000079, A032020, A036469. %K A303664 nonn %O A303664 0,2 %A A303664 _Ilya Gutkovskiy_, Apr 28 2018