This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303667 #12 Feb 16 2025 08:33:54 %S A303667 1,2,3,4,6,9,13,18,25,36,52,74,104,147,209,297,421,596,845,1199,1701, %T A303667 2411,3417,4844,6868,9738,13806,19573,27749,39342,55778,79079,112112, %U A303667 158944,225342,319479,452941,642152,910404,1290719,1829911,2594344,3678108,5214606,7392970,10481335 %N A303667 Expansion of 2/((1 - x)*(3 - theta_3(x))), where theta_3() is the Jacobi theta function. %C A303667 Partial sums of A006456. %H A303667 Alois P. Heinz, <a href="/A303667/b303667.txt">Table of n, a(n) for n = 0..5000</a> %H A303667 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a> %H A303667 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %H A303667 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %F A303667 G.f.: 1/((1 - x)*(1 - Sum_{k>=1} x^(k^2))). %p A303667 b:= proc(n) option remember; %p A303667 `if`(n=0, 1, add(b(n-i^2), i=1..isqrt(n))) %p A303667 end: %p A303667 a:= proc(n) option remember; %p A303667 `if`(n<0, 0, b(n)+a(n-1)) %p A303667 end: %p A303667 seq(a(n), n=0..50); # _Alois P. Heinz_, Apr 28 2018 %t A303667 nmax = 45; CoefficientList[Series[2/((1 - x) (3 - EllipticTheta[3, 0, x])), {x, 0, nmax}], x] %t A303667 nmax = 45; CoefficientList[Series[1/((1 - x) (1 - Sum[x^k^2, {k, 1, nmax}])), {x, 0, nmax}], x] %t A303667 a[0] = 1; a[n_] := a[n] = Sum[Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; Accumulate[Table[a[n], {n, 0, 45}]] %Y A303667 Cf. A000290, A006456, A010052, A302833, A303668. %K A303667 nonn %O A303667 0,2 %A A303667 _Ilya Gutkovskiy_, Apr 28 2018