This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303668 #9 Feb 16 2025 08:33:54 %S A303668 1,2,3,5,8,12,19,30,46,71,111,172,266,413,640,991,1537,2383,3692,5722, %T A303668 8869,13745,21303,33018,51172,79308,122917,190503,295251,457597, %U A303668 709207,1099165,1703546,2640245,4091988,6341979,9829132,15233702,23609994,36592010,56712212,87895562 %N A303668 Expansion of 1/((1 - x)*(2 - theta_2(sqrt(x))/(2*x^(1/8)))), where theta_2() is the Jacobi theta function. %C A303668 Partial sums of A023361. %H A303668 Alois P. Heinz, <a href="/A303668/b303668.txt">Table of n, a(n) for n = 0..5254</a> %H A303668 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a> %H A303668 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A303668 G.f.: 1/((1 - x)*(1 - Sum_{k>=1} x^(k*(k+1)/2))). %p A303668 b:= proc(n) option remember; `if`(n=0, 1, %p A303668 add(`if`(issqr(8*j+1), b(n-j), 0), j=1..n)) %p A303668 end: %p A303668 a:= proc(n) option remember; %p A303668 `if`(n<0, 0, b(n)+a(n-1)) %p A303668 end: %p A303668 seq(a(n), n=0..50); # _Alois P. Heinz_, Apr 28 2018 %t A303668 nmax = 41; CoefficientList[Series[1/((1 - x) (2 - EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)))), {x, 0, nmax}], x] %t A303668 nmax = 41; CoefficientList[Series[1/((1 - x) (1 - Sum[x^(k (k + 1)/2), {k, 1, nmax}])), {x, 0, nmax}], x] %t A303668 a[0] = 1; a[n_] := a[n] = Sum[SquaresR[1, 8 k + 1] a[n - k], {k, 1, n}]/2; Accumulate[Table[a[n], {n, 0, 41}]] %Y A303668 Cf. A000217, A010054, A023361, A302835, A303667. %K A303668 nonn %O A303668 0,2 %A A303668 _Ilya Gutkovskiy_, Apr 28 2018