This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303670 #18 Mar 09 2019 08:38:07 %S A303670 7,3,3,0,2,4,9,4,3,3,8,5,8,3,0,1,6,9,1,0,9,4,5,9,9,2,8,8,4,7,8,0,9,9, %T A303670 3,4,9,8,4,5,3,3,8,3,5,0,5,0,0,1,0,2,2,1,9,8,2,2,3,0,0,5,9,6,1,7,2,4, %U A303670 1,6,2,7,2,0,2,0,5,9,0,9,6,0,2,2,2,1,5,2,0,0,3,9,5,6,8,9,2,2,9,2,7,2,6,1,2,1 %N A303670 Decimal expansion of Product_{k>=1} Gamma(1 + 1/k^2). %F A303670 Equals Product_{k>=1} Gamma(1/k^2) / k^2. %F A303670 Equals exp(-gamma*Pi^2/6 + Sum_{k>=2} (-1)^k*zeta(k)*zeta(2*k)/k), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Mar 09 2019 %F A303670 Equals exp(-gamma*Pi^2/6 + A306774). %e A303670 0.73302494338583016910945992884780993498453383505001022198223... %p A303670 Digits := 120: evalf(product(GAMMA(1+1/n^2), n = 1..infinity)); %p A303670 evalf(exp(-gamma*Pi^2/6 + Sum((-1)^k*Zeta(k)*Zeta(2*k)/k, k=2..infinity)), 121); # _Vaclav Kotesovec_, Mar 09 2019 %t A303670 RealDigits[NProduct[Gamma[1 + 1/n^2], {n, 1, Infinity}, WorkingPrecision -> 120, NProductFactors -> 1000], 10, 70][[1]] %o A303670 (PARI) exp(-Euler*Pi^2/6 + sumalt(k=2, (-1)^k*zeta(k)*zeta(2*k)/k)) \\ _Vaclav Kotesovec_, Mar 09 2019 %Y A303670 Cf. A306769, A306774, A324590. %K A303670 nonn,cons %O A303670 0,1 %A A303670 _Vaclav Kotesovec_, Apr 28 2018