A303675 Triangle read by rows: coefficients in the sum of odd powers as expressed by Faulhaber's theorem, T(n, k) for n >= 1, 1 <= k <= n.
1, 6, 1, 120, 30, 1, 5040, 1680, 126, 1, 362880, 151200, 17640, 510, 1, 39916800, 19958400, 3160080, 168960, 2046, 1, 6227020800, 3632428800, 726485760, 57657600, 1561560, 8190, 1, 1307674368000, 871782912000, 210680870400, 22313491200, 988107120, 14217840, 32766, 1
Offset: 1
Examples
The triangle begins (see the Knuth reference p. 10): 1; 6, 1; 120, 30, 1; 5040, 1680, 126, 1; 362880, 151200, 17640, 510, 1; 39916800, 19958400, 3160080, 168960, 2046, 1; 6227020800, 3632428800, 726485760, 57657600, 1561560, 8190, 1; . Let S(n, m) = Sum_{j=1..n} j^m. Faulhaber's formula gives for m = 7 (m odd!): F(n, 7) = 5040*C(n+4, 8) + 1680*C(n+3, 6) + 126*C(n+2, 4) + C(n+1, 2). Faulhaber's theorem asserts that for all n >= 1 S(n, 7) = F(n, 7). If n = 43 the common value is 1600620805036.
References
- John H. Conway and Richard Guy, The Book of Numbers, Springer (1996), p. 107.
Links
- Donald E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:9207222 [math.CA], 1992.
- Petro Kolosov, Polynomial identities involving central factorial numbers, GitHub, 2024. See pp. 3, 6.
Crossrefs
Programs
-
Maple
T := proc(n,k) local m; m := n-k; 2*(2*m+1)!*add((-1)^(j+m)*(j+1)^(2*n)/((j+m+2)!*(m-j)!), j=0..m) end: seq(seq(T(n, k), k=1..n), n=1..8); # Peter Luschny, May 09 2018
-
Mathematica
(* After Peter Luschny's above formula. *) T[n_, k_] := (1/(n-k+1))*Sum[(-1)^j*Binomial[2*(n-k+1), j]*((n-k+1) - j)^(2*n), {j, 0, n-k+1}]; Column[Table[T[n, k], {n, 1, 10}, {k, 1, n}], Center]
-
Sage
def A303675(n, k): return factorial(2*(n-k)+1)*A008957(n, k) for n in (1..7): print([A303675(n, k) for k in (1..n)]) # Peter Luschny, May 10 2018
Formula
T(n, k) = (2*(n-k)+1)!*A008957(n, k), n >= 1, 1 <= k <= n.
T(n, k) = (1/m)*Sum_{j=0..m} (-1)^j*binomial(2*m,j)*(m-j)^(2*n) where m = n-k+1. - Peter Luschny, May 09 2018
Extensions
New name by Peter Luschny, May 10 2018
Comments