A304133 T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 3 or 6 king-move adjacent elements, with upper left element zero.
1, 2, 2, 3, 5, 3, 5, 7, 7, 5, 8, 17, 9, 17, 8, 13, 31, 19, 19, 31, 13, 21, 49, 33, 44, 33, 49, 21, 34, 103, 53, 80, 80, 53, 103, 34, 55, 193, 89, 140, 176, 140, 89, 193, 55, 89, 327, 155, 244, 320, 320, 244, 155, 327, 89, 144, 641, 261, 436, 582, 651, 582, 436, 261, 641, 144
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..1..1. .0..0..1..1. .0..1..1..1. .0..1..1..0. .0..0..1..1 ..0..0..0..1. .0..0..0..1. .0..0..1..1. .1..1..1..1. .0..0..0..1 ..0..0..0..0. .0..0..0..0. .1..1..1..1. .1..1..1..1. .0..1..1..1 ..0..0..1..1. .0..0..0..0. .0..1..1..1. .1..1..1..0. .0..0..1..1 ..0..0..0..1. .0..0..0..0. .0..0..1..1. .1..1..0..0. .0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..511
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +4*a(n-3) -2*a(n-4) for n>5
k=3: a(n) = a(n-1) +2*a(n-3) for n>7
k=4: a(n) = a(n-1) +3*a(n-3) +a(n-5) -a(n-6) -5*a(n-7) -2*a(n-8) +2*a(n-10) for n>13
k=5: [order 16] for n>22
k=6: [order 45] for n>48
k=7: [order 79] for n>87
Comments