A303682 T(n,k) = Number of n X k 0..1 arrays with every element unequal to 0, 1 or 3 king-move adjacent elements, with upper left element zero.
1, 2, 2, 3, 5, 3, 5, 7, 7, 5, 8, 17, 9, 17, 8, 13, 31, 15, 15, 31, 13, 21, 49, 25, 28, 25, 49, 21, 34, 103, 39, 44, 44, 39, 103, 34, 55, 193, 57, 64, 76, 64, 57, 193, 55, 89, 327, 87, 90, 110, 110, 90, 87, 327, 89, 144, 641, 137, 132, 150, 177, 150, 132, 137, 641, 144, 233, 1207
Offset: 1
Examples
Some solutions for n=5, k=4 ..0..0..0..0. .0..0..0..0. .0..1..1..0. .0..1..1..1. .0..0..1..1 ..0..0..0..0. .0..0..0..0. .1..1..1..1. .1..1..1..1. .0..1..1..1 ..0..0..0..0. .0..0..0..0. .1..1..1..1. .1..1..1..1. .1..1..1..1 ..1..0..0..0. .0..0..0..0. .1..1..1..1. .1..1..1..1. .1..1..1..1 ..1..1..0..0. .0..0..0..0. .1..1..1..1. .0..1..1..0. .0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1624
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +4*a(n-3) -2*a(n-4) for n>5
k=3: a(n) = a(n-1) +2*a(n-4) for n>5
k=4: a(n) = a(n-1) +a(n-4) +a(n-5) for n>8
k=5: a(n) = a(n-1) +a(n-4) +a(n-6) for n>10
k=6: a(n) = a(n-1) +a(n-4) +a(n-7) for n>12
k=7: a(n) = a(n-1) +a(n-4) +a(n-8) for n>14
Comments