cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303694 Array read by antidiagonals: T(n,k) is the number of noncrossing partitions up to rotation composed of n blocks of size k.

This page as a plain text file.
%I A303694 #18 Feb 18 2020 19:22:21
%S A303694 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,3,1,1,1,1,3,7,6,1,1,1,1,3,11,
%T A303694 19,14,1,1,1,1,4,17,52,86,34,1,1,1,1,4,25,102,307,372,95,1,1,1,1,5,33,
%U A303694 187,811,1936,1825,280,1,1,1,1,5,43,300,1772,6626,13207,9143,854,1
%N A303694 Array read by antidiagonals: T(n,k) is the number of noncrossing partitions up to rotation composed of n blocks of size k.
%C A303694 Also, the number of unlabeled planar k-gonal cacti having n polygons.
%C A303694 The number of noncrossing partitions counted distinctly is given by A070914(n,k-1).
%H A303694 Andrew Howroyd, <a href="/A303694/b303694.txt">Table of n, a(n) for n = 0..1274</a>
%H A303694 Miklos Bona, Michel Bousquet, Gilbert Labelle, Pierre Leroux, <a href="https://arxiv.org/abs/math/9804119">Enumeration of m-ary cacti</a>, arXiv:math/9804119 [math.CO], Apr 1998.
%H A303694 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cactus_graph">Cactus graph</a>
%H A303694 Wikipedia, <a href="https://en.wikipedia.org/wiki/Noncrossing_partition">Noncrossing partition</a>
%H A303694 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a>
%F A303694 T(n,k) = ((Sum_{d|n} phi(n/d)*binomial(k*d,d)) + (Sum_{d|gcd(n-1,k)} phi(d) * binomial(n*k/d, (n-1)/d)))/(k*n) - binomial(k*n,n)/(n*(k-1)+1) for n > 0.
%F A303694 T(n,k) ~ A070914(n,k-1)/(n*k) for fixed k > 1.
%e A303694 Array begins:
%e A303694 ==================================================================
%e A303694 n\k| 1   2    3     4      5       6       7        8        9
%e A303694 ---+--------------------------------------------------------------
%e A303694 0  | 1   1    1     1      1       1       1        1        1 ...
%e A303694 1  | 1   1    1     1      1       1       1        1        1 ...
%e A303694 2  | 1   1    1     1      1       1       1        1        1 ...
%e A303694 3  | 1   2    2     3      3       4       4        5        5 ...
%e A303694 4  | 1   3    7    11     17      25      33       43       55 ...
%e A303694 5  | 1   6   19    52    102     187     300      463      663 ...
%e A303694 6  | 1  14   86   307    811    1772    3412     5993     9821 ...
%e A303694 7  | 1  34  372  1936   6626   17880   40770    82887   154079 ...
%e A303694 8  | 1  95 1825 13207  58385  191967  518043  1213879  2558305 ...
%e A303694 9  | 1 280 9143 93496 532251 2141232 6830545 18471584 44121134 ...
%e A303694 ...
%t A303694 T[0, _] = 1;
%t A303694 T[n_, k_] := (DivisorSum[n, EulerPhi[n/#] Binomial[k #, #]&] + DivisorSum[ GCD[n-1, k], EulerPhi[#] Binomial[n k/#, (n-1)/#]&])/(k n) - Binomial[k n, n]/(n (k-1) + 1);
%t A303694 Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, May 22 2018 *)
%o A303694 (PARI) T(n,k)={if(n==0, 1, (sumdiv(n,d,eulerphi(n/d)*binomial(k*d,d)) + sumdiv(gcd(n-1,k), d, eulerphi(d)*binomial(n*k/d, (n-1)/d)))/(k*n) - binomial(k*n,n)/(n*(k-1)+1))}
%Y A303694 Columns 2..7 are A002995(n+1), A054423, A054362, A054365, A054368, A054371.
%Y A303694 Cf. A070914, A209805, A303864, A303929.
%K A303694 nonn,tabl
%O A303694 0,14
%A A303694 _Andrew Howroyd_, Apr 28 2018