A303715 Number of nX4 0..1 arrays with every element unequal to 0, 1 or 5 king-move adjacent elements, with upper left element zero.
5, 5, 8, 17, 36, 76, 161, 349, 749, 1604, 3449, 7412, 15912, 34177, 73421, 157693, 338696, 727505, 1562612, 3356300, 7209009, 15484261, 33258581, 71436052, 153437513, 329568260, 707879240, 1520453249, 3265780149, 7014565813
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0. .0..0..0..0. .0..1..0..0. .0..0..1..0. .0..0..0..0 ..0..0..0..0. .1..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..0..0 ..1..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1 ..0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0. .1..0..0..0 ..0..0..0..0. .0..0..1..0. .0..0..0..0. .0..1..0..0. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A303719.
Formula
Empirical: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6)
Comments