A303716 Number of nX5 0..1 arrays with every element unequal to 0, 1 or 5 king-move adjacent elements, with upper left element zero.
8, 7, 14, 36, 81, 169, 361, 784, 1681, 3600, 7744, 16641, 35721, 76729, 164836, 354025, 760384, 1633284, 3508129, 7535025, 16184529, 34762816, 74666881, 160376896, 344473600, 739894401, 1589218225, 3413480625, 7331811876, 15747991081
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0..0. .0..0..0..1..0. .0..1..0..0..0. .0..0..0..0..0 ..1..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..1 ..0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0 ..0..0..0..0..0. .0..0..0..0..0. .1..0..0..0..1. .0..0..0..0..0 ..0..1..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A303719.
Formula
Empirical: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6) for n>9
Comments