This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303728 #68 Jul 03 2018 17:19:38 %S A303728 1,1,1,0,1,1,3,4,1,15,10,0,6,1,45,40,45,36,1,105,175,315,126,105,120, %T A303728 1,315,616,1890,336,2520,960,0,0,0,0,0,0,0,336,1,1323,2884,9450,756, %U A303728 18900,4320,0,6720,2268,0,3780,0,0,3024,1,5355,15520,47250,19656 %N A303728 Triangle read by rows: T(n,k) is the number of labeled cyclic subgroups of order k in the alternating group A_n, 1 <= k <= A051593(n). %e A303728 Triangle begins: %e A303728 1; %e A303728 1; %e A303728 1, 0, 1; %e A303728 1, 3, 4; %e A303728 1, 15, 10, 0, 6; %e A303728 1, 45, 40, 45, 36; %e A303728 1, 105, 175, 315, 126, 105, 120; %e A303728 1, 315, 616, 1890, 336, 2520, 960, 0, 0, 0, 0, 0, 0, 0, 336; %e A303728 ... %o A303728 (PARI) %o A303728 permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} %o A303728 G(n)={my(s=0); forpart(p=n, if(sum(i=1,#p,p[i]-1)%2==0, my(d=lcm(Vec(p))); s+=x^d*permcount(p)/eulerphi(d))); s} %o A303728 for(n=1, 10, print(Vecrev(G(n)/x))) %Y A303728 Row sums are A051636. %Y A303728 Cf. A051593, A074881, A181950. %K A303728 nonn,tabf %O A303728 1,7 %A A303728 _Andrew Howroyd_, Jul 03 2018