cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303762 a(0) = 1, and for n >= 1, a(n) is either the largest divisor of a(n-1) not already present in the sequence, or (if all divisors already used), a(n-1) * {the least prime p such that p does not divide a(n-1) and p*a(n-1) is not already present}.

This page as a plain text file.
%I A303762 #33 Jun 07 2018 22:10:11
%S A303762 1,2,6,3,15,5,10,30,210,105,35,7,14,42,21,231,77,11,22,66,33,165,55,
%T A303762 110,330,2310,1155,385,770,154,462,6006,3003,1001,143,13,26,78,39,195,
%U A303762 65,130,390,2730,1365,455,91,182,546,273,4641,1547,221,17,34,102,51,255,85,170,510,3570,1785,595,119,238,714,357,3927,1309,187,374,1122,561,2805,935
%N A303762 a(0) = 1, and for n >= 1, a(n) is either the largest divisor of a(n-1) not already present in the sequence, or (if all divisors already used), a(n-1) * {the least prime p such that p does not divide a(n-1) and p*a(n-1) is not already present}.
%C A303762 Each a(n+1) is either a divisor or a multiple of a(n).
%C A303762 The construction is otherwise like that of A303760, except here we choose the largest divisor instead of the smallest one. In contrast to A303760, this sequence is NOT permutation of A005117: 70 = A019565(13) is the first missing squarefree number. See also comments in A303769, A303749 and A302775.
%C A303762 Index of greatest prime factor of a(n) is monotonic and increments at n = {0, 1, 2, 4, 8, 15, 31, 50, 102, 157, 317, 480, 964, 1451, 2907, 4366, 8738, 13113, 26233, 39356, ...} - _Michael De Vlieger_, May 22 2018
%H A303762 Antti Karttunen, <a href="/A303762/b303762.txt">Table of n, a(n) for n = 0..26232</a>
%F A303762 a(n) = A019565(A303769(n)). [Conjectured]
%e A303762 From _Michael De Vlieger_, May 23 2018: (Start)
%e A303762 Table below shows the initial 31 terms at right. First column is index n. Second shows "." if a(n) = largest divisor of a(n-1), or factor p. Third shows presence "1" or absence "." of prime k among prime divisors of a(n).
%e A303762    n   p\d    MN(n)      a(n)
%e A303762   ---------------------------
%e A303762    0     .    .            1
%e A303762    1     2    1            2
%e A303762    2     3    11           6
%e A303762    3     .    .1           3
%e A303762    4     5    .11         15
%e A303762    5     .    ..1          5
%e A303762    6     2    1.1         10
%e A303762    7     3    111         30
%e A303762    8     7    1111       210
%e A303762    9     .    .111       105
%e A303762   10     .    ..11        35
%e A303762   11     .    ...1         7
%e A303762   12     2    1..1        14
%e A303762   13     3    11.1        42
%e A303762   14     .    .1.1        21
%e A303762   15    11    .1.11      231
%e A303762   16     .    ...11       77
%e A303762   17     .    ....1       11
%e A303762   18     2    1...1       22
%e A303762   19     3    11..1       66
%e A303762   20     .    .1..1       33
%e A303762   21     5    .11.1      165
%e A303762   22     .    ..1.1       55
%e A303762   23     2    1.1.1      110
%e A303762   24     3    111.1      330
%e A303762   25     7    11111     2310
%e A303762   26     .    .1111     1155
%e A303762   27     .    ..111      385
%e A303762   28     2    1.111      770
%e A303762   29     .    1..11      154
%e A303762   30     3    11.11      462
%e A303762   31    13    11.111    6006
%e A303762   ...  (End)
%t A303762 Nest[Append[#, Block[{d = Divisors@ #[[-1]], p = 2}, If[Complement[d, #] != {}, Complement[d, #][[-1]], While[Nand[Mod[#[[-1]], p] != 0, FreeQ[#, p #[[-1]] ] ], p = NextPrime@ p]; p #[[-1]] ] ] ] &, {1}, 75] (* _Michael De Vlieger_, May 22 2018 *)
%o A303762 (PARI)
%o A303762 default(parisizemax,2^31);
%o A303762 up_to = 2^14;
%o A303762 A053669(n) = forprime(p=2, , if (n % p, return(p))); \\ From A053669
%o A303762 v303762 = vector(up_to);
%o A303762 m_inverses = Map();
%o A303762 prev=1; for(n=1,up_to,fordiv(prev,d,if(!mapisdefined(m_inverses,(prev/d)),v303762[n] = (prev/d);mapput(m_inverses,(prev/d),n);break)); if(!v303762[n], apu = prev; while(mapisdefined(m_inverses,try = prev*A053669(apu)), apu *= A053669(apu)); v303762[n] = try; mapput(m_inverses,try,n)); prev = v303762[n]);
%o A303762 A303762(n) = v303762[n+1];
%Y A303762 Subset of A005117.
%Y A303762 Cf. also A019565, A302774, A302775, A303749, A303769.
%Y A303762 Cf. A303760, A303761 (variants).
%K A303762 nonn
%O A303762 0,2
%A A303762 _Antti Karttunen_, May 03 2018