This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303772 #5 May 04 2018 22:38:01 %S A303772 0,1,3,5,9,2,17,6,33,10,65,4,129,18,12,257,513,34,1025,14,20,66,2049, %T A303772 7,4097,130,36,22,8193,11,16385,258,68,514,26,38,32769,1026,132,15, %U A303772 65537,19,131073,70,42,2050,262145,260 %N A303772 Inverse of A303771. %H A303772 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A303772 a(n) = A303768(A052331(n)). %o A303772 (PARI) %o A303772 default(parisizemax,2^31); %o A303772 up_to_e = 18; %o A303772 up_to = (2 + 2^up_to_e); %o A303772 v050376 = vector(2+up_to_e); %o A303772 A050376(n) = v050376[n]; %o A303772 ispow2(n) = (n && !bitand(n,n-1)); %o A303772 i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == 2+up_to_e,break)); %o A303772 A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); }; %o A303772 A053669(n) = forprime(p=2, , if (n % p, return(p))); \\ From A053669 %o A303772 v303760 = vector(up_to); %o A303772 m_inverses = Map(); %o A303772 prev=1; for(n=1,up_to,fordiv(prev,d,if(!mapisdefined(m_inverses,d),v303760[n] = d;mapput(m_inverses,d,n);break)); if(!v303760[n], apu = prev; while(mapisdefined(m_inverses,try = prev*A053669(apu)), apu *= A053669(apu)); v303760[n] = try; mapput(m_inverses,try,n)); prev = v303760[n]); %o A303772 A303760(n) = v303760[n+1]; %o A303772 A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; %o A303772 A303771(n) = A052330(A048675(A303760(n))); %o A303772 m303772 = Map(); %o A303772 for(n=0,up_to-1,mapput(m303772,A303771(n),n)); %o A303772 A303772(n) = mapget(m303772,n); %Y A303772 Cf. A052331, A303768. %K A303772 nonn,more %O A303772 1,3 %A A303772 _Antti Karttunen_, May 02 2018