A303790 G.f. satisfies: 120*(1-216*x)*A(x) + (1-3*(1-216*x)^2)*A'(x) - (1-216*x)*(2-216*x)*x*A''(x) = 0, a(0)=1.
1, 60, 7380, 1090320, 176978340, 30471320880, 5461962826320, 1007754602437440, 189974650649174820, 36407481107391279600, 7068262344580438681680, 1386636913539840633652800, 274365765112318301005693200, 54676607910763730416065374400
Offset: 0
Keywords
Examples
G.f. = 1 + 60*x + 7380*x^2 + 1090320*x^3 + 176978340*x^4 + 30471320880*x^5 + ... _Michael Somos_, Jun 22 2018
Links
- G. C. Greubel, Table of n, a(n) for n = 0..250
- M. Kreshchuk and T. Gulden, The Picard-Fuchs equation in classical and quantum physics: Application to higher-order WKB method, arXiv:1803.07566 [hep-th], 2018.
- Bradley Klee, Proof Certificate
- Brad Klee, Deriving Hypergeometric Picard-Fuchs Equations, Wolfram Demonstrations Project (2018).
Crossrefs
Real Period: A113424.
Programs
-
Mathematica
a[0] = 1; a[1] = 60; a[n0_] := a[n0] = ReplaceAll[Dot[Divide[ {5-27*n+27*n^2,(5-3*n)*(-1+3*n)},18*n^2], {216*a[n0-1],(216^2)*a[n0-2]}],n->n0] a /@ Range[0, 15] (* Second program: *) CoefficientList[Series[Hypergeometric2F1[1/6, 5/6, 1, 432*x - 46656*x^2],{x,0,20}], x]
Formula
G.f.: 2F1(1/6, 5/6; 1; 432*x - 46656*x^2).
D-finite with recurrence a(0) = 1; a(1) = 60; a(n) = (c1/c0)*216*a(n-1) + (c2/c0)*216^2*a(n-2); with c1 = 5-27*n+27*n^2; c2 = (5-3*n)*(-1+3*n); c0 = 18*n^2.
a(n) ~ 6^(3*n) / (Pi*n). - Vaclav Kotesovec, May 01 2018
Comments