A303821 Number of ways to write 2*n as p + 2^x + 5^y, where p is a prime, and x and y are nonnegative integers.
0, 1, 1, 3, 3, 4, 4, 5, 3, 6, 5, 5, 6, 6, 4, 7, 6, 7, 7, 10, 4, 9, 10, 6, 10, 8, 5, 8, 6, 7, 7, 9, 5, 8, 11, 6, 10, 11, 6, 11, 8, 6, 8, 11, 4, 9, 9, 7, 6, 11, 6, 7, 11, 7, 10, 11, 5, 11, 9, 6, 7, 6, 6, 5, 12, 7, 10, 15, 8, 15, 10, 11, 13, 11, 7, 9, 8, 9, 12, 14
Offset: 1
Keywords
Examples
a(2) = 1 since 2*2 = 2 + 2^0 + 5^0 with 2 prime. a(3) = 1 since 2*3 = 3 + 2^1 + 5^0 with 3 prime. a(5616) = 2 since 2*5616 = 9059 + 2^11 + 5^3 = 10979 + 2^7 + 5^3 with 9059 and 10979 both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Mixed sums of primes and other terms, in: Additive Number Theory (edited by D. Chudnovsky and G. Chudnovsky), pp. 341-353, Springer, New York, 2010.
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
Crossrefs
Cf. A000040, A000079, A000351, A118955, A156695, A273812, A302982, A302984, A303233, A303234, A303338, A303363, A303389, A303393, A303399, A303428, A303401, A303432, A303434, A303539, A303540, A303541, A303543, A303601, A303637, A303639, A303656, A303660, A303702, A303932, A303934, A304034, A304081.
Programs
-
Mathematica
tab={};Do[r=0;Do[If[PrimeQ[2n-2^k-5^m],r=r+1],{k,0,Log[2,2n-1]},{m,0,Log[5,2n-2^k]}];tab=Append[tab,r],{n,1,80}];Print[tab]
Comments