cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303821 Number of ways to write 2*n as p + 2^x + 5^y, where p is a prime, and x and y are nonnegative integers.

Original entry on oeis.org

0, 1, 1, 3, 3, 4, 4, 5, 3, 6, 5, 5, 6, 6, 4, 7, 6, 7, 7, 10, 4, 9, 10, 6, 10, 8, 5, 8, 6, 7, 7, 9, 5, 8, 11, 6, 10, 11, 6, 11, 8, 6, 8, 11, 4, 9, 9, 7, 6, 11, 6, 7, 11, 7, 10, 11, 5, 11, 9, 6, 7, 6, 6, 5, 12, 7, 10, 15, 8, 15, 10, 11, 13, 11, 7, 9, 8, 9, 12, 14
Offset: 1

Views

Author

Zhi-Wei Sun, May 01 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. Moreover, for any integer n > 4, we can write 2*n as p + 2^x + 5^y, where p is an odd prime, and x and y are positive integers.
This has been verified for n up to 10^10.
See also A303934 and A304081 for further refinements, and A303932 and A304034 for similar conjectures.

Examples

			a(2) = 1 since 2*2 = 2 + 2^0 + 5^0 with 2 prime.
a(3) = 1 since 2*3 = 3 + 2^1 + 5^0 with 3 prime.
a(5616) = 2 since 2*5616 = 9059 + 2^11 + 5^3 = 10979 + 2^7 + 5^3 with 9059 and 10979 both prime.
		

Crossrefs

Programs

  • Mathematica
    tab={};Do[r=0;Do[If[PrimeQ[2n-2^k-5^m],r=r+1],{k,0,Log[2,2n-1]},{m,0,Log[5,2n-2^k]}];tab=Append[tab,r],{n,1,80}];Print[tab]